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Motivation

In the paper

[FJJK] R. Fabbri, T. Jäger, R. Johnson and G. Keller, A
Sharkovskii-type theorem for minimally forced interval maps,
Topological Methods in Nonlinear Analysis, Journal of the
Juliusz Shauder Center, 26 (2005), 163–188.

the Sharkovskĭı theorem was extended to a class of systems that
are essentially quasi-periodically forced interval maps.

This is a first step towards the understanding of the
quasi-periodically forced Combinatorial dynamics.
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Sharkovskĭı’s Theorem for quasi-periodically forced interval
maps

In what follows we consider the cylinder S1 × I and the following
family of skew products on it:

(

θn+1

xn+1

)

= T

(

θn
xn

)

=

(

R(θn)
f (θn, xn)

)

where R(θn) = θn + ω (mod 1) with ω ∈ R \Q and
f : S1 × I −→ I is continuous in both variables.

Observation

In fact, in [JFFK] they consider a slightly more general situation.
Indeed, instead of taking the cylinder they consider the product of
a compact metric space Θ with I . Then, R : Θ −→ Θ is a minimal
homeomorphism with the property that Rℓ is minimal for every ℓ.
We work in the cylinder case for simplicity and clarity.
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The Sharkovskĭı Ordering Sh≥

It is the ordering

3 Sh> 5 Sh> 7 Sh> · · · Sh>
2 · 3 Sh> 2 · 5 Sh> 2 · 7 Sh> · · · Sh>
4 · 3 Sh> 4 · 5 Sh> 4 · 7 Sh> · · · Sh>

...
2n · 3 Sh> 2n · 5 Sh> 2n · 7 Sh> · · · Sh>

...
2∞ Sh> · · · Sh> 2n Sh> · · · Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1.

defined on the set NSh = N ∪ {2∞} (we have to include the symbol
2∞ to assure the existence of supremum for certain sets).

In the ordering Sh≥ the least element is 1 and the largest is 3. The
supremum of the set {1, 2, 4, . . . , 2n, . . . } is 2∞.
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Theorem (Fabbri, Jäger, Johnson and Keller)

Suppose that T : S1 × I −→ S1 × I of the above form admits a

q-periodic strip and let p ∈ N be such that p ≤Sh q. Then T

admits a p-periodic core strip.
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Theorem (Fabbri, Jäger, Johnson and Keller)

Suppose that T : S1 × I −→ S1 × I of the above form admits a

q-periodic strip and let p ∈ N be such that p ≤Sh q. Then T

admits a p-periodic core strip.

Remark

In the trivial case when f does not depend on θ then the periodic
strips are sets of circles in the cylinder which are obtained as a
product of periodic orbits P (or periodic orbits of intervals) of f by
the circle S1: S1 × P .
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Examples of periodic (core) strips

In both cases, ω =
√
5−1
2 and the map f (θ, x) is specified below

the figure in each case.
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A two periodic orbit of periodic curves.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

3.85x(1 − x)(1 + 111
105

cos(2πθ))

A numerical three periodic orbit of
periodic solid strips (needs analytical
proof of its existence).
They correspond to the three periodic
orbit of transitive intervals exhibited by
the map µx(1− x) with µ = 3.85 . . .
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The notation in the theorem

We will not define the [FJJK] notion of core. Rather we will
directly define the notion of a strip and the two possible kinds of
core strips.

Definition (Strip)

A strip is a closed subset A of the cylinder such that

{θ ∈ S1 : A ∩ ({θ} × I ) is an interval}

is a residual set on S1.

Remember

that G ⊆ S1 is residual if it contains the intersection of a
countable family of open dense subsets of S1.
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The notation in the theorem

We will not define the [FJJK] notion of core. Rather we will
directly define the notion of a strip and the two possible kinds of
core strips.

Definition (Strip)

A strip is a closed subset A of the cylinder such that

{θ ∈ S1 : A ∩ ({θ} × I ) is an interval}

is a residual set on S1.

Remember

that G ⊆ S1 is residual if it contains the intersection of a
countable family of open dense subsets of S1.

As it has been said, there are two kinds of core strips: solid or
pinched.

Ll. Alsedà (UAB) An example of a strongly invariant pinched core strip 6/24



Motivation The inductive construction of a pseudo-curve A skew product on Ω Conclusions

Core strips

Definition (solid strip)

A strip A is solid if for each θ ∈ S1, A∩ ({θ}× I ) is an interval and

inf
θ∈S1

|A ∩ ({θ} × I )| > 0.

An example is the picture shown before:
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Core strips

Definition (solid strip)

A strip A is solid if for each θ ∈ S1, A∩ ({θ}× I ) is an interval and

inf
θ∈S1

|A ∩ ({θ} × I )| > 0.

An example is the picture shown before:
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Definition (pinched strip)

A strip A is pinched if A ∩ ({θ} × I ) is a point for a dense set of
θ ∈ S1.

An example is the picture shown before:
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Pseudo-curves

The pinched core strips are the pseudo-curves according to the
following definition.

Definition (Pseudo-curve)

A subset of the cylinder is a pseudo-curve if it is the closure of the
graph of a continuous function from a residual set of S1 into I .
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Pseudo-curves

The pinched core strips are the pseudo-curves according to the
following definition.

Definition (Pseudo-curve)

A subset of the cylinder is a pseudo-curve if it is the closure of the
graph of a continuous function from a residual set of S1 into I .

Observe that a pseudo-curve is a pinched strip by definition but
not conversely.

Example: the harmonic comb (a pinched non-core strip)
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Properties of pseudo-curves

Remark

A curve (that is, the graph of a continuous function from S1 to I )
is a pseudo-curve.

Properties of pseudo-curves

i If a pseudo-curve contains a curve then it is a curve.

ii Any strongly T -invariant pseudo-curve is a minimal set.

iii If a strongly T -invariant pseudo-curve contains an arc of a
curve, then it is also a curve (since the base map is an
irrational rotation).

A subset A of the cylinder is strongly T -invariant if T (A) = A.
An arc of a curve is the graph of a continuous function from an arc
of S1 to I .
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Motivation

In this context, a natural question is whether the [FJJK] theorem is
valid restricted to curves. That is:

Question 1

is it true that if T has a q-periodic curve and p ≤Sh q then all
p-periodic strips of T are curves?

Ll. Alsedà (UAB) An example of a strongly invariant pinched core strip 10/24



Motivation The inductive construction of a pseudo-curve A skew product on Ω Conclusions

Motivation

In this context, a natural question is whether the [FJJK] theorem is
valid restricted to curves. That is:

Question 1

is it true that if T has a q-periodic curve and p ≤Sh q then all
p-periodic strips of T are curves?

A counterexample to Question 1 would be given by the positive

answer to:

Question 2

Can a pseudo-curve which is not a curve occur as the unique
strongly invariant object forced by a 2-periodic orbit of curves?
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Motivation

In this context, a natural question is whether the [FJJK] theorem is
valid restricted to curves. That is:

Question 1

is it true that if T has a q-periodic curve and p ≤Sh q then all
p-periodic strips of T are curves?

A counterexample to Question 1 would be given by the positive

answer to:

Question 2

Can a pseudo-curve which is not a curve occur as the unique
strongly invariant object forced by a 2-periodic orbit of curves?

The aim of this talk is to construct the example required in
Question 2.
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Motivation II

More precisely, we will construct an example of a skew product T
on the cylinder which will have a 2-periodic orbit of curves and a
strongly T -invariant pseudo-curve that does not contain any arc of
a curve. Moreover, our example is monotone (decreasing) on the
fibres and the pinched set has Lebesgue measure one. However, it
is not a continuous curve.
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Motivation II

More precisely, we will construct an example of a skew product T
on the cylinder which will have a 2-periodic orbit of curves and a
strongly T -invariant pseudo-curve that does not contain any arc of
a curve. Moreover, our example is monotone (decreasing) on the
fibres and the pinched set has Lebesgue measure one. However, it
is not a continuous curve.

The construction is done in two steps:

I First we topologically construct a pseudo-curve as a limit of
sets Ai defined inductively.

II Second we construct a quasi-periodically forced skew product
T on the cylinder which has a 2-periodic orbit of curves (the
upper and lower circles) and the pseudo-curve as a totally
invariant object.
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The inductive construction of a pseudo-curve

Our cylinder is
Ω = S1 × [−2, 2].

The pseudo-curve is
constructed as a limit
of sets Ai defined
inductively.

A rough idea of the
construction is given
by the following first
three elements of the
sequence:

x
K0,4 K0,2 0 0,2 0,4

y

K2

K1

0

1

2

A−1
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The inductive construction of a pseudo-curve

Our cylinder is
Ω = S1 × [−2, 2].

The pseudo-curve is
constructed as a limit
of sets Ai defined
inductively.

A rough idea of the
construction is given
by the following first
three elements of the
sequence:

x
K0,4 K0,2 0 0,2 0,4

y

K2

K1

0

1

2

A0
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The inductive construction of a pseudo-curve

Our cylinder is
Ω = S1 × [−2, 2].

The pseudo-curve is
constructed as a limit
of sets Ai defined
inductively.

A rough idea of the
construction is given
by the following first
three elements of the
sequence:

x
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Notation to construct the sets Ai

Notation

For every ℓ ∈ Z we denote

ℓ∗ := Rℓ(0) = ℓω (mod 1) and

OrbR(0) := {ℓ∗ : ℓ ∈ Z}.

Now we start with A−1 := S1 × {0} and construct iteratively
compact sets A0,A1, . . . such that each An is the closure of the
graph of a continuous function

S1 \ {ℓ∗ : |ℓ| ≤ n} −→ [−2, 2].

The construction is done by “perturbing” the set An−1 in a
neighbourhood of the the points ({ℓ∗} × [−2, 2]) ∩ An−1 with
ℓ ∈ {n,−n} so that ({ℓ∗} × [−2, 2]) ∩ An will now be an interval
for ℓ ∈ {n,−n}.
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The scalable “bricks” of our construction

For ℓ ∈ {−n, n}, the
box
R(ℓ∗, n, α, δ, p

ℓ
, p+

ℓ
, p−

ℓ
)

around the point
p
ℓ
= (ℓ∗, a) which is

the unique point of
({ℓ∗}× [−2, 2]) ∩An−1.

Note

The green line is the
set An−1.

b

b

a b

ℓ∗ℓ∗ − δ ℓ∗ + δ

p+
ℓ

p−
ℓ
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The scalable “bricks” of our construction
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The scalable “bricks” of our construction

The above boxes satisfy the following important condition (among
many other which are highly technical):

Let l , z ∈ Z be such that |l | ≥ |z |. Then either R(l∗) ∩R(z∗) = ∅
or |l | > |z | and R(l∗) is contained in one of the two connected
components of the interior of R(z∗) \

(

A|z | ∩ ({z∗} × [−2, 2])
)

.
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Ll. Alsedà (UAB) An example of a strongly invariant pinched core strip 15/24



Motivation The inductive construction of a pseudo-curve A skew product on Ω Conclusions

The scalable “bricks” of our construction

The above boxes satisfy the following important condition (among
many other which are highly technical):

Let l , z ∈ Z be such that |l | ≥ |z |. Then either R(l∗) ∩R(z∗) = ∅
or |l | > |z | and R(l∗) is contained in one of the two connected
components of the interior of R(z∗) \

(

A|z | ∩ ({z∗} × [−2, 2])
)

.
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Ll. Alsedà (UAB) An example of a strongly invariant pinched core strip 15/24



Motivation The inductive construction of a pseudo-curve A skew product on Ω Conclusions

The scalable “bricks” of our construction

The above boxes satisfy the following important condition (among
many other which are highly technical):

Let l , z ∈ Z be such that |l | ≥ |z |. Then either R(l∗) ∩R(z∗) = ∅
or |l | > |z | and R(l∗) is contained in one of the two connected
components of the interior of R(z∗) \

(

A|z | ∩ ({z∗} × [−2, 2])
)

.
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Reinterpreting the sets Ai

Now observe that each set An is the closure of the graph of a
continuous function

ϕn : S1 \ OrbR(0) −→ [−2, 2];

and S1 \ OrbR(0) is residual in S1.

On the other hand, the space of continuous functions from a
residual set of S1 into [−2, 2] can be endowed with the supremum
pseudo-metric. Then it is a complete metric space.

Remark

The supremum pseudo-metric in the space of pseudo-curves is
equivalent to the Hausdorff distance between the corresponding
pseudo-curves.

It is not difficult to prove that the sequence ϕn is a Cauchy
sequence in this space.
With this in mind we can define:
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Passing to the limit to obtain the pseudo-curve

Definition

We denote by A the closure of the graph of the function

ϕ := lim
n→∞

ϕn.

Thus, A is a pseudo-curve (and hence compact) which can be
shown to have the following properties:

A ∩ ({ℓ∗} × [−2, 2]) = Aℓ ∩ ({ℓ∗} × [−2, 2]) is a
non-degenerate interval for each ℓ∗ ∈ OrbR(0).

A ∩ ({θ} × [−2, 2]) = {ϕ(θ)} is a point for each θ /∈ OrbR(0).

Clearly, since A is a pseudo-curve, it is not a curve.
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The dynamics on the cylinder: making A invariant

Our next goal is to define a continuous map

T : Ω −→ Ω T (θ, x) = (R(θ), f (θ, x))

such that T (A) = A and, for each θ ∈ S1, T (θ, 2) = (R(θ),−2)
and T (θ,−2) = (R(θ), 2).

Thus, A is a T -strongly invariant pseudo-curve (hence it does not
contain any arc of a curve) which coexists with a 2-periodic orbit
of curves.
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A sequence of maps

This map is obtained as limit of a Cauchy sequence of continuous
skew products

Tn : Ω −→ Ω Tn(θ, x) = (R(θ), fn(θ, x))

such that

Tn(θ, 2) = (R(θ),−2) and Tn(θ,−2) = (R(θ), 2) (that is
fn(θ,−2) = 2 and fn(θ, 2) = −2) for each θ ∈ S1 .

For each θ the function fn(θ, ·) is defined piecewise linear and
monotonically decreasing in such a way that Tn is globally
continuous.

The sequence is constructed inductively in the following way:
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The functions Fn

We define Li as the set of all ℓ ∈ Z such that ℓ∗ is contained in
exactly i boxes R.

Then we set Bi = ∪z∈Liπ(R(z∗)) where π : Ω −→ S1 denotes the
projection with respect to the first component. It follows that each
Bi is a dense set of S1 and that Bi % Bi+1.

We also set Aθ := A ∩ {θ} × I .

The basic idea of the construction of the maps Tn is that, for every
m ∈ N and k ≥ m, Tk sends each vertical segment Aℓ∗ to A(ℓ+1)∗

in reversing order for every ℓ ∈ Lm.

This will imply that F (Aℓ
∗

) = A(ℓ+1)∗ for every ℓ ∈ N and, by the
density of ∪ℓ∈NAℓ

∗

in A, F (A) = A.
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The function f1(θ, ·)

For every θ /∈ B1 we define f1(θ, ·) as piecewise linear in two
pieces such that f1(θ, ϕ(θ)) = ϕ(R(θ)) (notice that if θ /∈ B1 then
θ /∈ OrbR(0) and so R(θ) /∈ OrbR(0)).

When θ ∈ B1 there exists ℓ ∈ L1 such that θ ∈ π(R(ℓ∗)).
If θ ∈ [ℓ∗ − δ(ℓ), ℓ∗ + δ(ℓ)] ⊂ π(R(ℓ∗)) then the map f1(θ, ·) is

piecewise linear with three pieces so that R(ℓ∗) ∩ {θ} × [2, 2] is
mapped (reversing orientation) to R((ℓ+ 1)∗) ∩ {R(θ)} × [2, 2].

The fibres corresponding to θ ∈ π(R(ℓ∗)) \ [ℓ∗ − δ(ℓ), ℓ∗ + δ(ℓ)]
leave room for connecting homotopically the maps f1(θ, ·) already
defined.
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The functions fn(θ, ·)

We define fn(θ, ·) from fn−1(θ, ·) as follows:

If θ /∈ Bn we set fn(θ, x) = fn−1(θ, x) for every x ∈ I .

If θ ∈ Bn then there exist ℓ ∈ Ln and m ∈ Ln−1 such that
R(ℓ∗) ⊂ R(m∗) and θ ∈ π(R(ℓ∗)).

For θ ∈ [ℓ∗ − δ(ℓ), ℓ∗ + δ(ℓ)] ⊂ π(R(ℓ∗)) we set:
fn(θ, x) = fn−1(θ, x) for every x /∈ R(m∗) ∩ {θ} × [2, 2].
The map fn(θ, ·) maps R(ℓ∗) ∩ {θ} × [2, 2] reversing orientation

to R((ℓ+ 1)∗) ∩ {R(θ)} × [2, 2].
fn(θ, ·) is continuous and piecewise affine in the two intervals

(R(m∗) \ R(ℓ∗)) ∩ {θ} × [2, 2].
In the fibres corresponding to

θ ∈ π(R(ℓ∗)) \ [ℓ∗ − δ(ℓ), ℓ∗ + δ(ℓ)] we define the maps fn(θ, ·) to
be a homotopy (with respect to θ) between the maps already
defined.
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The skew product T

In this way we obtain

Theorem

The function T := limn→∞ Tn is a continuous skew product of the

form

T (θ, x) = (R(θ), f (θ, x))

with T (θ, 2) = (R(θ),−2) and T (θ,−2) = (R(θ), 2) for each
θ ∈ S1. Moreover, T (A) = A and this is the only invariant object

of T . In particular T has no invariant curves.
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Conclusions

We have constructed a skew product map having a strongly
invariant pseudo-curve which is not a curve and the pseudo curve
is forced by a 2-periodic orbit of curves.

This answers the two questions that we have raised and clarifies
the [FJJK] theorem in the sense that these kind of complicate
objects must be taken into account.
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