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Motivation

We are interested in studying complicate objects semianalitically
(obtaining expansions in a truncated base) to be able to predict
and understand changes in the geometry or dynamical properties
as reducibility and others.

To fix ideas let us describe a couple of models that we can use as
toy models.

We consider skew products of the form

Fσ,ε

(
θn
xn

)
=

{
θn+1 = R(θn) = θn + ω (mod 1),

xn+1 = T (θ, x)
(1)

where x ∈ R+, θ ∈ S1, ω ∈ R \Q and T (θ, x) is of the form either
f (x)g(θ) or f (x) + g(θ).
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The [GOPY]-Keller model

In the system (1) we take T (θ, x) = f (x)g(θ) (multiplicative
forcing) with

1 f : [0,∞) −→ [0,∞) ∈ C1, bounded, strictly increasing,
strictly concave and verifying f (0) = 0 (to fix ideas take
f (x) = 2σ tanh(x) with σ > 0 as in the [GOPY] model).
Thus, x = 0 will be invariant.

2 g : S1 −→ [0,∞) bounded and continuous (to fix ideas take
g(θ) = ε+ | cos(2πθ)| in a similar way to the [GOPY] model
– except for ε and the absolute value).

We get:

Fσ,ε

(
θn
xn

)
=

{
θn+1 = θn + ω (mod 1),

xn+1 = 2σ tanh(xn)(ε+ | cos(2πθn)|)
(2)

ω =
√

5+1
2 , σ > 0 and ε ≥ 0.

[GOPY] Grebogi, Celso et al., Strange attractors that are not chaotic, Phys. D 13 1984 1–2 261–268.
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The [GOPY]-Keller model

We want to approximate the attractor of the above system (if it
exists).

Pinching condition ⇒ SNA’s creation

When g = 0 at some point it is called the pinched case, whereas if
g is strictly positive it is called the non-pinched case.

In the pinched case, any Fσ,ε–invariant set has to be 0 on a point
and, hence, on a dense set (in fact on a residual set). This is
because the circle x ≡ 0 is invariant and the θ-projection of every
invariant object must be invariant under Rω.
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The [GOPY]-Keller model

The following theorem due to Keller [Kel] clarifies the dynamics of
these models. Before stating it we need to clarify the rôle of the
constant σ:

Since the line x = 0 is invariant, by
using Birkhoff Ergodic Theorem, it
turns out that

σ := f ′(0) exp

(∫
S1

log g(θ)dθ

)
<∞.

is the vertical Lyapunov exponent on
the circle x = 0.

Movie: A family of Keller Attractors

[Kel] Keller, Gerhard, A note on strange non-chaotic attractors, Fund. Math. 151
1996 2 139–148.
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Keller Theorem

There exists an upper semicontinuous map φ : S1 −→ [0,∞) whose
graph is invariant under the Model (2). Moreover,

1 The Lebesgue measure on the circle, lifted to the graph of φ
is a Sinai-Ruelle-Bowen measure,

2 if σ ≤ 1 then φ ≡ 0,
3 if σ > 1 then φ(θ) > 0 for almost every θ,
4 if σ > 1 and g(θ0) = 0 for some θ0 then the set {θ : φ(θ) > 0}

is meager and φ is almost everywhere discontinuous,
5 if σ > 1 and g > 0 then φ is positive and continuous; if g is
C1 then so is φ,

6 if σ 6= 1 then |xn − φ(θn)| → 0 exponentially fast for almost
every θ and every x > 0.

For this model we want to compute the attractor so that we can
detect the pinching parameter (regularity).
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The Nishikawa-Kaneko model
Three different plots for a = 3.0

ε = 0.1 ε = 0.156

{
θn+1 = θn + ω (mod 1),

xn+1 = ax(1− x) + ε sin(2πθn)
(3)

where x ∈ [0, 1] and ω =
√

5+1
2
.

ε = 0.18
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The Nishikawa-Kaneko model

In the Nishikawa-Kaneko paper it is described the fractalization
route (that they illustrate in the pictures) with support on rough
numerical computations.

Currently there is a strong debate about this route and about the
fact that what we get at the end is really a fractal.

For this model we want to compute the attractors so that we can
approximate their regularities and, perhaps, helping in deciding
whether the final object is a fractal.
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On the use of wavelets

As we have seen the invariant objects that we want to compute are
expressed as graphs of functions (from S1 to R).

The standard approach to compute invariant objects is to use finite
Fourier approximations (trigonometric polynomials) to get
expansions as:

F(θ) = a0 +
N∑

n=1

(an cos(nθ) + bn sin(nθ)) .

However, the regularity and periodicity of the trigonometric basis
makes clear that this approach is too costly since, as we have seen,
the topology and geometry of these objects is extremely
complicate.
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On the use of wavelets

In this case it seems more natural to use wavelets that adapt much
better to oscillatory, irregular and highly discontinuous objects.

Our aim is to devise an algorithm to compute massive finite
wavelet approximations for attractors with complicate geometry.
We need these massive approximations because we want to be able
to compute the regularities of the objects.
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A (short) crash course on wavelets and regularity

Let us start by the definition of Multiresolution Analysis (MRA)

Definition

A sequence of closed subspaces of L 2(R), {Vj}j∈Z, is a Multiresolution
Analysis if it satisfies:

{0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L 2(R).

{0} =
⋂

j∈Z Vj .

clos
(⋃

j∈Z Vj
)

= L 2(R).

There exists a function φ(x) whose integer translates, φ(x − n),
form an orthonormal basis of V0. Such function is called the scaling
function.

For each j ∈ Z it follows that f (x) ∈ Vj if and only if
f (x − 2jn) ∈ Vj for each n ∈ Z.

For each j ∈ Z it follows that f (x) ∈ Vj if and only if f (x/2) ∈ Vj+1.
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A (short) crash course on wavelets and regularity

Consider the bi-indexed family of maps obtained by dilations and
translations of φ(x):

φj ,n(x) =
1√
2j
φ

(
x − 2jn

2j

)
.

It can be shown that

1 {φj ,n}n∈Z is an orthonormal basis of Vj for each j ∈ Z, and

2 φ(x) characterizes the whole MRA (see [Mal]).

[Mal] Mallat, Stéphane, A wavelet tour of signal processing, Academic Press
Inc., San Diego, CA, 1998, xxiv+577.
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A (short) crash course on wavelets and regularity

If we fix an MRA, we know that Vj ⊂ Vj−1. Then we define the subspace
Wj as the orthogonal complement of Vj on Vj−1.

That is
Vj−1 =Wj ⊕ Vj .

We are looking for an orthonormal basis of Wj , which verifies a relation
with φ(x), (the wavelets). This basis is given from a function called the
mother wavelet ψ(x) by the formula

ψj,n(x) =
1√
2j
ψ

(
x − 2jn

2j

)
.

In [Mal] it is shown that:

Mallat and Meyer Theorem

For every j ∈ Z the family {ψj,n}n∈Z is an orthonormal basis of each
Wj ,

The wavelets {ψj,n}(j,n)∈Z×Z are an orthonormal basis of L 2(R) for
all j , n ∈ Z.
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A (short) crash course on wavelets and regularity
How to compute the mother wavelet

L 2(R) = clos

⋃
j∈Z
Vj


Vj = span{φj,n(x)}n∈Z

L 2(R) = clos

⊕
j∈Z
Wj


Wj = span{ψj,n(x)}n∈Z

φ(x)

h[n]

ψ(x)

g [n]

ĥ(ω) =
∑
n∈Z

h[n]e−inω

Wj := Vj−1\Vj

V0 = span{φ(x − n)}n∈Z W0 = span{ψ(x − n)}n∈Z

ψ̂(ω) := 1√
2
e−iω ĥ∗(ω + π)φ̂(ω)

g [n] := (−1)1−nh[1− n]

φ̂(ω) =
∞∏
p=1

ĥ(2−pω)
√

2

1√
2
ψ( x

2
) =

∑
n∈Z

g [n]φ(x − n)1√
2
φ( x

2
) =

∑
n∈Z

h[n]φ(x − n)
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A (short) crash course on wavelets and regularity
Examples of mother wavelets

Shannon wavelet (no compact support)

ψ(x) =
sin(2π(x − 1/2))

2π(x − 1/2)
−

sin(π(x − 1/2))

π(x − 1/2)

h[n] =


√

2
2

if n = 0,
√

2−1(n−1)/2

πn
if n odd,

0 otherwise.

Daubechies 4 wavelet (compact support)

No closed formula

h[n] =



0.4829629131445341 . . . if n = 0,

0.8365163037378079 . . . if n = 1,

0.2241438680420134 . . . if n = 2,

−0.1294095225512604 . . . if n = 3,

0 otherwise.
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A (short) crash course on wavelets and regularity
Examples of mother wavelets

0 0.5 1

−1

0

1

Haar (Daubechies 2) wavelet

(compact support)

ψ(x) := 1[0, 1
2

)(x)− 1[ 1
2
,1)(x)

where

1[a,b)(x) =

{
1 if x ∈ [a, b),

0 otherwise.

h[n] =

{
1√
2

if n = 0, 1,

0 otherwise.

It is the unique Daubechies wavelet with an explicit formula.
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Fixing and translating the wavelet

We will be focused on the Daubechies wavelets family. Each
Daubechies wavelet has support [1− p, p] where p is the maximal
number of vanishing moments:∫ p

1−p
xkψ(x) dx = 0 for 0 ≤ k < p.

Since our framework is S1 = R/Z, we transform an R-function into
an S1-function by setting ψPER

j ,n as follows:

ψPER
j ,n (θ) =

∑
m∈Z

ψj ,n

x∈R : frac(x)=θ︷ ︸︸ ︷
(θ + m) = 2−j/2

∑
m∈Z

ψ

(
(

x︷ ︸︸ ︷
θ + m)− 2jn

2j

)
.

ψPER
j ,n are 1-periodic functions belonging to L 1(S1).
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Fixing and translating the wavelet

It is known that an orthonormal basis of L 2(S1) is given by
{1, ψPER

−j ,n with j ≥ 0 and n = 0, 1, . . . , 2j − 1} provided that ψ(x) is
an orthonormal wavelet from a R-MRA (see [HeWe]).

Hence, once ψ is given, we are (almost) ready to compute finite
(truncated) wavelet approximations of the type:

ϕ ∼ a0 +
J∑

j=0

2j−1∑
n=0

d−j ,nψ
PER
−j ,n(θ).

These approximations will be good provided that J is big enough.

Thus, we need to perform a feasible strategy to evaluate ψPER (and
ψPER
−j ,n) at θ ∈ S1.

[HeWe] Hernández, Eugenio and Weiss, Guido, A first course on wavelets, CRC
Press, Boca Raton, FL, 1996, xx+489.
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Computing regularities with wavelet coefficients

Theorem

Let s ∈ R \ {0} and let ψ be a mother Daubechies wavelet with
more than max(s, 5/2− s) vanishing moments. Then f ∈ Bs

∞,∞ if
and only if there exists C > 0 such that for all j ≤ 0

sup
n∈Z
|〈f , ψPER

j ,n 〉| ≤ C2τ j with τ =

{
s + 1

2 if s > 0,

s − 1
2 if s < 0,

In the case of Haar, [Tri02], there is an analogous result.

[Coh] Cohen, Albert, Numerical analysis of wavelet methods, North-Holland,
2003, xviii+336.

[Tri01] Triebel, Hans, Theory of function spaces. III, Birkhäuser Verlag, Basel,
2006, xii+426.

[Tri02] Triebel, Hans, Bases in function spaces, sampling, discrepancy, numerical
integration, European Mathematical Society, Zürich, 2010, x+296.
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Computing regularities with wavelet coefficients

Corollary (Keller’s Theorem)

The upper semicontinuous function λ : S1 −→ R+ whose graph is
the attractor of the system belongs to Bs

∞,∞(S1) with s ∈ (0, 1]
when ε > 0.

Lemma

The upper semicontinuous function λ : S1 −→ R+ whose graph is
the attractor of the system belongs to B0

∞,∞(S1) when ε = 0.

The above result justifies the use of Besov spaces instead of the
Hölder ones because of the regularity zero.
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Computing coefficients using the Invariance Equation

The functional version of the above systems can be studied using
the iteration of theTransfer Operator:

0 1

ϕ

T(ϕ)

R−1
ω (θ) θ

f (·)g(·)

θ + ω

T

Let P be the space of all
functions (not necessarily
continuous) from S1 to R.

Define T(ϕ)(θ) as:

ϕ 7→ f σ(ϕ(R−1
ω (θ))) · gε(R−1

ω (θ)).

The graph of a function ϕ : S1 −→ R is invariant for the
System (2) if and only if ϕ is a fixed point of T. That is:

f σ(ϕ(R−1
ω (θ))) · gε(R−1

ω (θ)) = T(ϕ)(θ) = ϕ(θ).

Which is the Invariance Equation:

fσ(ϕ(θ)) · gε(θ) = ϕ(Rω(θ)).

Ll. Alsedà (UAB) Numerical computation of invariant objects with wavelets 20/46



Motivation Wavelets in Theory Computing regularities Invariance Eq. and Haar Invariance Equation and Daubechies

Computing coefficients using the Invariance Equation

To solve the above functional equation we write the attractor as

ϕ(θ) = φ0,0 +
J∑

j=0

2j−1∑
n=0

d−j [n]ψPER
−j ,n(θ) = d0 +

N−1∑
`=1

d`ψ
PER
` (θ)

where we have set N = 2J+1 and, for easiness, we work with the
single index ` = `(j , n) = 2j + n instead of the two indices −j and
n.

As usual we plug this expression into the Invariance Equation and
we get:

d0 +
N−1∑
`=1

d`ψ
PER
` (Rω(θ)) = fσ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θ)

)
· gε(θ)

Of course, the coefficients d0 and d` are now the explicit numerical
unknowns.
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Computing coefficients using the Invariance Equation

We have a single functional equation with N unknowns. To
compute them, as usual, we discretize the variable θ into N dyadic
points

θi = i
N ∈ S1 for i = 0, 1, . . . ,N − 1

and we impose that the Invariance Equation is verified for every
such θi :

d0 +
N−1∑
`=1

d`ψ
PER
` (Rω(θi ))− fσ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi )

)
· gε(θi )︸ ︷︷ ︸

Fσ,ε(DPER)i

= 0

where DPER denotes the vector of unknowns:

DPER := (φ0,0, d0[0], . . . , d−J [2J − 1]) = (d0, d1, . . . , dN−1)

Thus, we get a non-linear system of N equations with N unknowns.
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Solving Fσ,ε(DPER) = 0

We will use the Newton’s Method to find DPER
sol such that

Fσ,ε (DPER
sol ) ≈

−→
0 .

That is, given a tolerance tol,
starting with a seed DPER

0

solve iteratively JFσ,ε(DPER
n )(Xn) = −Fσ,ε(DPER

n ),
where Xn := DPER

n+1 − DPER
n ,

until it is found DPER
sol such that |DPER

sol − DPER
prev sol| < tol.

To do this we need to compute the Jacobian matrix

JFσ,ε =

(
∂Fσ,ε(DPER)i

∂d`

)
.
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Deriving the Jacobian matrix JFσ,ε
Recall that

Fσ,ε(DPER)i = d0 +

N−1∑
`=1

d`ψ
PER
` (Rω(θi ))− fσ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi )

)
· gε(θi ).

Then, the entry i , ` of the Jacobian matrix which is

(JFσ,ε)i ,` =
∂Fσ,ε(DPER)i

∂d`

can be explicitly computed as:

(JFσ,ε)i,` =


1− f ′σ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi )

)
· gε(θi ) if ` = 0,

ψPER
` (Rω(θi ))− f ′σ

(
d0 +

N−1∑
`=1

d`ψ
PER
` (θi )

)
· gε(θi ) · ψPER

` (θi ) if ` 6= 0.

These equations in explicit form (and also the invariance equation)
are too complicate to deal with. It is much easier to use the
algebraized version of these equations.
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Going into algebra: The wavelets and rotated wavelets
matrices Ψ and ΨR

We start by defining the following N × N matrices:

The wavelets and rotated wavelets matrices

The wavelets matrix Ψ whose column 0 is constant 1 and the
column ` ∈ {1, 2, . . . ,N − 1} is ψPER

` (θi ) with
i = 0, 1, . . . ,N − 1,

The rotated wavelets matrix ΨR whose column 0 is constant 1
and the column ` ∈ {1, 2, . . . ,N − 1} is ψPER

` (Rω(θi )) with
i = 0, 1, . . . ,N − 1.

Ll. Alsedà (UAB) Numerical computation of invariant objects with wavelets 25/46



Motivation Wavelets in Theory Computing regularities Invariance Eq. and Haar Invariance Equation and Daubechies

Structure of the matrices Ψ and ΨR

1 ψPER
0,0 (0) ψPER

−1,0(0) ψPER
−1,1(0) ψPER

−2,0(0) ψPER
−2,1(0) ψPER

−2,2(0) ψPER
−2,3(0) ψPER

−3,0(0) ψPER
−3,1(0) ψPER

−3,2(0) ψPER
−3,3(0) ψPER

−3,4(0) ψPER
−3,5(0) ψPER

−3,6(0) ψPER
−3,7(0)

1 ψPER
0,0

(
1

16

)
ψPER
−1,0

(
1

16

)
ψPER
−1,1

(
1

16

)
ψPER
−2,0

(
1

16

)
ψPER
−2,1

(
1

16

)
ψPER
−2,2

(
1

16

)
ψPER
−2,3

(
1

16

)
ψPER
−3,0

(
1

16

)
ψPER
−3,1

(
1

16

)
ψPER
−3,2

(
1

16

)
ψPER
−3,3

(
1

16

)
ψPER
−3,4

(
1

16

)
ψPER
−3,5

(
1

16

)
ψPER
−3,6

(
1

16

)
ψPER
−3,7

(
1

16

)
1 ψPER

0,0

(
2

16

)
ψPER
−1,0

(
2

16

)
ψPER
−1,1

(
2

16

)
ψPER
−2,0

(
2

16

)
ψPER
−2,1

(
2

16

)
ψPER
−2,2

(
2

16

)
ψPER
−2,3

(
2

16

)
ψPER
−3,0

(
2

16

)
ψPER
−3,1

(
2

16

)
ψPER
−3,2

(
2

16

)
ψPER
−3,3

(
2

16

)
ψPER
−3,4

(
2

16

)
ψPER
−3,5

(
2

16

)
ψPER
−3,6

(
2

16

)
ψPER
−3,7

(
2

16

)
1 ψPER

0,0

(
3

16

)
ψPER
−1,0

(
3

16

)
ψPER
−1,1

(
3

16

)
ψPER
−2,0

(
3

16

)
ψPER
−2,1

(
3

16

)
ψPER
−2,2

(
3

16

)
ψPER
−2,3

(
3

16

)
ψPER
−3,0

(
3

16

)
ψPER
−3,1

(
3

16

)
ψPER
−3,2

(
3

16

)
ψPER
−3,3

(
3

16

)
ψPER
−3,4

(
3

16

)
ψPER
−3,5

(
3

16

)
ψPER
−3,6

(
3

16

)
ψPER
−3,7

(
3

16

)
1 ψPER

0,0

(
4

16

)
ψPER
−1,0

(
4

16

)
ψPER
−1,1

(
4

16

)
ψPER
−2,0

(
4

16

)
ψPER
−2,1

(
4

16

)
ψPER
−2,2

(
4

16

)
ψPER
−2,3

(
4

16

)
ψPER
−3,0

(
4

16

)
ψPER
−3,1

(
4

16

)
ψPER
−3,2

(
4

16

)
ψPER
−3,3

(
4

16

)
ψPER
−3,4

(
4

16

)
ψPER
−3,5

(
4

16

)
ψPER
−3,6

(
4

16

)
ψPER
−3,7

(
4

16

)
1 ψPER

0,0

(
5

16

)
ψPER
−1,0

(
5

16

)
ψPER
−1,1

(
5

16

)
ψPER
−2,0

(
5

16

)
ψPER
−2,1

(
5

16

)
ψPER
−2,2

(
5

16

)
ψPER
−2,3

(
5

16

)
ψPER
−3,0

(
5

16

)
ψPER
−3,1

(
5

16

)
ψPER
−3,2

(
5

16

)
ψPER
−3,3

(
5

16

)
ψPER
−3,4

(
5

16

)
ψPER
−3,5

(
5

16

)
ψPER
−3,6

(
5

16

)
ψPER
−3,7

(
5

16

)
1 ψPER

0,0

(
6

16

)
ψPER
−1,0

(
6

16

)
ψPER
−1,1

(
6

16

)
ψPER
−2,0

(
6

16

)
ψPER
−2,1

(
6

16

)
ψPER
−2,2

(
6

16

)
ψPER
−2,3

(
6

16

)
ψPER
−3,0

(
6

16

)
ψPER
−3,1

(
6

16

)
ψPER
−3,2

(
6

16

)
ψPER
−3,3

(
6

16

)
ψPER
−3,4

(
6

16

)
ψPER
−3,5

(
6

16

)
ψPER
−3,6

(
6

16

)
ψPER
−3,7

(
6

16

)
1 ψPER

0,0

(
7

16

)
ψPER
−1,0

(
7

16

)
ψPER
−1,1

(
7

16

)
ψPER
−2,0

(
7

16

)
ψPER
−2,1

(
7

16

)
ψPER
−2,2

(
7

16

)
ψPER
−2,3

(
7

16

)
ψPER
−3,0

(
7

16

)
ψPER
−3,1

(
7

16

)
ψPER
−3,2

(
7

16

)
ψPER
−3,3

(
7

16

)
ψPER
−3,4

(
7

16

)
ψPER
−3,5

(
7

16

)
ψPER
−3,6

(
7

16

)
ψPER
−3,7

(
7

16

)
1 ψPER

0,0

(
8

16

)
ψPER
−1,0

(
8

16

)
ψPER
−1,1

(
8

16

)
ψPER
−2,0

(
8

16

)
ψPER
−2,1

(
8

16

)
ψPER
−2,2

(
8

16

)
ψPER
−2,3

(
8

16

)
ψPER
−3,0

(
8

16

)
ψPER
−3,1

(
8

16

)
ψPER
−3,2

(
8

16

)
ψPER
−3,3

(
8

16

)
ψPER
−3,4

(
8

16

)
ψPER
−3,5

(
8

16

)
ψPER
−3,6

(
8

16

)
ψPER
−3,7

(
8

16

)
1 ψPER

0,0

(
9

16

)
ψPER
−1,0

(
9

16

)
ψPER
−1,1

(
9

16

)
ψPER
−2,0

(
9

16

)
ψPER
−2,1

(
9

16

)
ψPER
−2,2

(
9

16

)
ψPER
−2,3

(
9

16

)
ψPER
−3,0

(
9

16

)
ψPER
−3,1

(
9

16

)
ψPER
−3,2

(
9

16

)
ψPER
−3,3

(
9

16

)
ψPER
−3,4

(
9

16

)
ψPER
−3,5

(
9

16

)
ψPER
−3,6

(
9

16

)
ψPER
−3,7

(
9

16

)
1 ψPER

0,0

(
10
16

)
ψPER
−1,0

(
10
16

)
ψPER
−1,1

(
10
16

)
ψPER
−2,0

(
10
16

)
ψPER
−2,1

(
10
16

)
ψPER
−2,2

(
10
16

)
ψPER
−2,3

(
10
16

)
ψPER
−3,0

(
10
16

)
ψPER
−3,1

(
10
16

)
ψPER
−3,2

(
10
16

)
ψPER
−3,3

(
10
16

)
ψPER
−3,4

(
10
16

)
ψPER
−3,5

(
10
16

)
ψPER
−3,6

(
10
16

)
ψPER
−3,7

(
10
16

)
1 ψPER

0,0

(
11
16

)
ψPER
−1,0

(
11
16

)
ψPER
−1,1

(
11
16

)
ψPER
−2,0

(
11
16

)
ψPER
−2,1

(
11
16

)
ψPER
−2,2

(
11
16

)
ψPER
−2,3

(
11
16

)
ψPER
−3,0

(
11
16

)
ψPER
−3,1

(
11
16

)
ψPER
−3,2

(
11
16

)
ψPER
−3,3

(
11
16

)
ψPER
−3,4

(
11
16

)
ψPER
−3,5

(
11
16

)
ψPER
−3,6

(
11
16

)
ψPER
−3,7

(
11
16

)
1 ψPER

0,0

(
12
16

)
ψPER
−1,0

(
12
16

)
ψPER
−1,1

(
12
16

)
ψPER
−2,0

(
12
16

)
ψPER
−2,1

(
12
16

)
ψPER
−2,2

(
12
16

)
ψPER
−2,3

(
12
16

)
ψPER
−3,0

(
12
16

)
ψPER
−3,1

(
12
16

)
ψPER
−3,2

(
12
16

)
ψPER
−3,3

(
12
16

)
ψPER
−3,4

(
12
16

)
ψPER
−3,5

(
12
16

)
ψPER
−3,6

(
12
16

)
ψPER
−3,7

(
12
16

)
1 ψPER

0,0

(
13
16

)
ψPER
−1,0

(
13
16

)
ψPER
−1,1

(
13
16

)
ψPER
−2,0

(
13
16

)
ψPER
−2,1

(
13
16

)
ψPER
−2,2

(
13
16

)
ψPER
−2,3

(
13
16

)
ψPER
−3,0

(
13
16

)
ψPER
−3,1

(
13
16

)
ψPER
−3,2

(
13
16

)
ψPER
−3,3

(
13
16

)
ψPER
−3,4

(
13
16

)
ψPER
−3,5

(
13
16

)
ψPER
−3,6

(
13
16

)
ψPER
−3,7

(
13
16

)
1 ψPER

0,0

(
14
16

)
ψPER
−1,0

(
14
16

)
ψPER
−1,1

(
14
16

)
ψPER
−2,0

(
14
16

)
ψPER
−2,1

(
14
16

)
ψPER
−2,2

(
14
16

)
ψPER
−2,3

(
14
16

)
ψPER
−3,0

(
14
16

)
ψPER
−3,1

(
14
16

)
ψPER
−3,2

(
14
16

)
ψPER
−3,3

(
14
16

)
ψPER
−3,4

(
14
16

)
ψPER
−3,5

(
14
16

)
ψPER
−3,6

(
14
16

)
ψPER
−3,7

(
14
16

)
1 ψPER

0,0

(
15
16

)
ψPER
−1,0

(
15
16

)
ψPER
−1,1

(
15
16

)
ψPER
−2,0

(
15
16

)
ψPER
−2,1

(
15
16

)
ψPER
−2,2

(
15
16

)
ψPER
−2,3

(
15
16

)
ψPER
−3,0

(
15
16

)
ψPER
−3,1

(
15
16

)
ψPER
−3,2

(
15
16

)
ψPER
−3,3

(
15
16

)
ψPER
−3,4

(
15
16

)
ψPER
−3,5

(
15
16

)
ψPER
−3,6

(
15
16

)
ψPER
−3,7

(
15
16

)





The rows of ΨR are evaluated at Rω(θi ) =
(

i
N

+ ω
)

(mod 1) instead of at θi = i
N
.
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Going into algebra: The reconstruction of the attractor
from the wavelet coefficients

With the above notation, we clearly get

ϕ(θi ) = d0 +
N−1∑
`=1

d`ψ
PER
` (θi ) = [ΨDPER]i .

Hence,

THE RECONSTRUCTION

(ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)> = ΨDPER.

Ll. Alsedà (UAB) Numerical computation of invariant objects with wavelets 27/46



Motivation Wavelets in Theory Computing regularities Invariance Eq. and Haar Invariance Equation and Daubechies

Going into algebra: Easy to rewrite
Algebraic expression of Fσ,ε(DPER

n )

Fσ,ε(DPER
n ) = ΨRDPER

n − ℘n,

where ℘n is the N-dimensional vector that has as i−th component:

[℘n]i = fσ ([ΨDPER
n ]i ) · gε(θi ).

Algebraic form of JFσ,ε

JFσ,ε = ΨR −∆σ,εΨ

where ∆σ,ε is the N × N diagonal matrix whose (diagonal) entries
are:

∂Fσ,ε
∂x

= f ′σ([ΨDPER]i ) · gε(θi ) =
∂ [℘n]i
∂x

.

Remark

The above algebraic form implies that the matrices Ψ and ΨR only need to be
(pre)computed once in the whole computation.
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The equations in algebraic form

At each Newton iterate we have to solve

℘n−ΨRDPER
n = −Fσ,ε(DPER

n ) = JFσ,ε(DPER
n )(Xn) = (ΨR−∆σ,εΨ)Xn

A remark on the initialization: how to choose the seed

Using the Trapezoidal rule we have

d` :=

∫
S1

ψPER
` ϕ dθ ≈ 1

N

N−1∑
i=0

ψPER
` (θi )ϕ(θi )

=
1

N

[
Ψ>
(
ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)

)>]
`
.

Then, we obtain

A good seed:

DPER
0 :=

1

N
Ψ>
(
ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)

)>
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The seed and the linear system from Newton’s method

We have to solve many times the system

(ΨR −∆σ,εΨ)Xn = −Fσ,ε(DPER
n )

This is difficult to solve because we are interested in doing so for N
big (22?) and, moreover, its typical spectrum looks like:

Eigenvalues for a non-pinched case. Eigenvalues for a quasi-pinched case.

A solution to both problems is preconditioning.
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Using Haar to solve the Invariance Equation:
preconditioning

A right preconditioning of a system Ax = b

is to solve first (ARprec)y = b and, after, calculate R−1
precx = y to

get the true solution x , where Rprec is an appropriate (easy)
non-singular (easily invertible) matrix.

To see how to choose a good candidate for Rprec let us study
better the Haar wavelet matrices.
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When the matrix Ψ generates ΨR : The trick for Haar

The Haar matrix Ψ for J = 2 (N = 2J+1 = 8) is:

Ψ =

1 ψPER
0,0 (0) ψPER

−1,0(0) ψPER
−1,1(0) ψPER

−2,0(0) ψPER
−2,1(0) ψPER

−2,2(0) ψPER
−2,3(0)

1 ψPER
0,0

(
1
8

)
ψPER
−1,0

(
1
8

)
ψPER
−1,1

(
1
8

)
ψPER
−2,0

(
1
8

)
ψPER
−2,1

(
1
8

)
ψPER
−2,2

(
1
8

)
ψPER
−2,3

(
1
8

)
1 ψPER

0,0

(
2
8

)
ψPER
−1,0

(
2
8

)
ψPER
−1,1

(
2
8

)
ψPER
−2,0

(
2
8

)
ψPER
−2,1

(
2
8

)
ψPER
−2,2

(
2
8

)
ψPER
−2,3

(
2
8

)
1 ψPER

0,0

(
3
8

)
ψPER
−1,0

(
3
8

)
ψPER
−1,1

(
3
8

)
ψPER
−2,0

(
3
8

)
ψPER
−2,1

(
3
8

)
ψPER
−2,2

(
3
8

)
ψPER
−2,3

(
3
8

)
1 ψPER

0,0

(
4
8

)
ψPER
−1,0

(
4
8

)
ψPER
−1,1

(
4
8

)
ψPER
−2,0

(
4
8

)
ψPER
−2,1

(
4
8

)
ψPER
−2,2

(
4
8

)
ψPER
−2,3

(
4
8

)
1 ψPER

0,0

(
5
8

)
ψPER
−1,0

(
5
8

)
ψPER
−1,1

(
5
8

)
ψPER
−2,0

(
5
8

)
ψPER
−2,1

(
5
8

)
ψPER
−2,2

(
5
8

)
ψPER
−2,3

(
5
8

)
1 ψPER

0,0

(
6
8

)
ψPER
−1,0

(
6
8

)
ψPER
−1,1

(
6
8

)
ψPER
−2,0

(
6
8

)
ψPER
−2,1

(
6
8

)
ψPER
−2,2

(
6
8

)
ψPER
−2,3

(
6
8

)
1 ψPER

0,0

(
7
8

)
ψPER
−1,0

(
7
8

)
ψPER
−1,1

(
7
8

)
ψPER
−2,0

(
7
8

)
ψPER
−2,1

(
7
8

)
ψPER
−2,2

(
7
8

)
ψPER
−2,3

(
7
8

)





=
1√
8

1 1
√

2 0 2 0 0 0

1 1
√

2 0 −2 0 0 0

1 1 −
√

2 0 0 2 0 0

1 1 −
√

2 0 0 −2 0 0

1 −1 0
√

2 0 0 2 0

1 −1 0
√

2 0 0 −2 0

1 −1 0 −
√

2 0 0 0 2

1 −1 0 −
√

2 0 0 0 −2




.

It is defined by

ψ−j,n(i/N) =
1√
N


2−j/2 for 0 ≤ t < s,

−2−j/2 for s ≤ t < 2s,

0 if t < 0.

for j = 0, 1, . . . , J, n = 0, 1, . . . , 2j − 1, i = 0, 1, . . . ,N − 1, s = 2J−j and

t = i − 2sn.
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When the matrix Ψ generates ΨR : The trick for Haar

Remark

The Haar matrices Ψ and ΨR are orthogonal. That is,

ΨΨ> = Id and ΨRΨ>R = Id .

Crucial Lemma

Set r = bωNc and let P = (pi ,j) be the permutation matrix such
that pi ,j = 1 if and only if j = i + r (mod N). Then,

ΨR = PΨ ⇒ ΨΨ>R = P>.
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Using Haar to solve the Invariance Equation:
preconditioning

THE TRICK that makes everything easily computable

In the case of Haar we take

Rprec = Ψ>R which gives Xn = Ψ>RYn

as a right preconditioner.

Then the system becomes

−Fσ,ε(DPER
n ) = (ΨR −∆σ,εΨ)Ψ>RYn = (Id−∆σ,εP

>)Yn.
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Using Haar to solve the Invariance Equation

To understand the effect of the above preconditioning let us look
at the preconditioned matrix Id−∆σ,εP

> for N = 8:

. . . and the matrix is. . .

1 0 0 0 0 f ′σgε 0 0
0 1 0 0 0 0 f ′σgε 0
0 0 1 0 0 0 0 f ′σgε

f ′σgε 0 0 1 0 0 0 0
0 f ′σgε 0 0 1 0 0 0
0 0 f ′σgε 0 0 1 0 0
0 0 0 f ′σgε 0 0 1 0
0 0 0 0 f ′σgε 0 0 1


where the symbol f ′σgε in the row i = 0, 1, . . . ,N − 1 denotes

f ′σ ([ΨDPER]i ) gε(θi ).

As we see, this preconditioning (change of variables) is very good:
by performing formally the Gauss Method on the system we obtain
an explicit recurrence that solves the system in O(N ) time.
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A bootstrap on efficiency: the rotated wavelet coefficients

This preconditioner is so good that we should make the change of
coordinates permanent and work with the rotated wavelet coefficients:

DPER

rot := ΨRDPER ⇐⇒ DPER = Ψ>R DPER

rot ⇐⇒ ΨDPER = P>DPER

rot

This new approach has the following

SIMPLIFYING CONSEQUENCES

Reconstruction:
(ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)> = ΨDPER

sol = ΨΨ>R DPER
rot,sol = P>DPER

rot,sol.

Evaluation of Fσ,ε(DPER
n ) (the Invariance Equation):[

Fσ,ε(DPER
n )
]
i

=
[
ΨRDPER

n

]
i
− fσ

([
ΨDPER

n

]
i

)
· g(θi )

in rotated wavelet coefficients is equivalent to[
DPER

rot,n

]
i
− f

([
P>DPER

rot,n

]
i

)
· g(θi )

The rotated seed DPER
rot,0 := ΨRD

PER
0 : Since

ΨRΨ> = (ΨΨ>R )> = (P>)> = P,

DPER
rot,0 := ΨRDPER

0 =
1

N
ΨRΨ>(ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)>

=
1

N
P(ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1)>.
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Using Haar to compute wavelet coefficients

Despite of the huge (N × N) linear systems to solve, as for the
FWT, we can detect the pinching point in “O(N ) time”. Indeed,
for N = 226 each Newton iterate takes less than 10 secs.

Regularity along ε(σ). Zoom around 1.5 the pinched point.

Because Haar it is not a basis of Bs
∞,∞ (for s > 0), we need other

Daubechies wavelets.
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Using Daubechies to solve the Invariance Equation
The wavelets and rotated wavelets matrices ΨR and Ψ

Recall that we have to solve many times the system

(ΨR −∆σ,εΨ)Xn = −Fσ,ε(DPER
n ),

now with Daubechies wavelets. To do so we need the wavelets and
rotated wavelets matrices ΨR and Ψ defined by

ψPER
j ,n (θi ) = 2−j/2

∑
m∈Z

ψ

(
(θi + m)− 2jn

2j

)
, and

ψPER
j ,n (Rω(θi )) = 2−j/2

∑
m∈Z

ψ

(
(Rω(θi ) + m)− 2jn

2j

)
,

for each θi = i
N , j = 0, . . . , J and n = 0, 1, . . . , 2j − 1.

We have to take N = 2J+1 to have the same number of equations
and unknowns. Then the matrices are huge of size 2J+1 × 2J+1

already for moderate values of J.
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Using Daubechies to solve the Invariance Equation
The wavelets and rotated wavelets matrices ΨR and Ψ

The computation of the matrices ΨR and Ψ is a massive
computation which is extremely costly in two ways:

We have to evaluate a Daubechies wavelet on a point 2N2

times and, since Daubechies wavelets do not have a closed
formula, the algorithm to perform these computations is an
extreme CPU consuming process (fortunately the matrices Ψ
and ΨR only need to be (pre)computed once).

The storage of the matrices requires 2N2 memory slots.
When, for instance, N = 226 and we store the wavelet values
as double this would require

2 ·
(
226
)2 · 23 bytes = 256 bytes = 64 petabytes

(that is, 64 mega gigabytes).

Fortunately there are a number of drastic simplifications that
convert the problem into a feasible one.
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Using Daubechies to solve the Invariance Equation
The wavelets and rotated wavelets matrices ΨR and Ψ

To compute the matrices ΨR and Ψ of Daubechies wavelets
with p > 1 vanishing moments with high precision we have
adapted the R-Daubechies–Lagarias algorithm to S1.

To simplify the computations and the storage we have used
the self-similarity of the matrices ΨR and Ψ.

[Daub] Daubechies, Ingrid,Ten lectures on wavelets Society for Industrial
and Applied Mathematics (SIAM),Philadelphia, 1992, xx+357.
[Vid] Vidakovic, Brani,Statistical modelling by wavelets John Wiley &
Sons, Inc., New York,1999, xiv+382.
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Daubechies – Lagarias on the circle (on practice)

The matrix below illustrates the self-similarity of the matrices ΨR and Ψ
(to save space we denote ψPER

−j,n by ψPER

j,n ).

Note that some of its vertical blocks are sparse:

1 ψPER
0,0 ((0) ψPER

1,0 ((0) ψPER
1,1 ((0) ψPER

2,0 ((0) ψPER
2,1 ((0) ψPER

2,2 ((0) ψPER
2,3 ((0) ψPER

3,0 ((0) 0 0 0 0 0 0 ψPER
3,7 ((0)

1 ψPER
0,0 ( 1

16
) ψPER

1,0 ( 1
16

) ψPER
1,1 ( 1

16
) ψPER

2,0 ( 1
16

) ψPER
2,1 ( 1

16
) ψPER

2,2 ( 1
16

) ψPER
2,3 ( 1

16
) ψPER

3,0 ( 1
16

) 0 0 0 0 0 0 0

1 ψPER
0,0 ( 2

16
) ψPER

1,0 ( 2
16

) ψPER
1,1 ( 2

16
) ψPER

2,0 ( 2
16

) ψPER
2,1 ( 2

16
) ψPER

2,2 ( 2
16

) ψPER
2,3 ( 2

16
) ψPER

3,7 ((0) ψPER
3,0 ((0) 0 0 0 0 0 0

1 ψPER
0,0 ( 3

16
) ψPER

1,0 ( 3
16

) ψPER
1,1 ( 3

16
) ψPER

2,0 ( 3
16

) ψPER
2,1 ( 3

16
) ψPER

2,2 ( 3
16

) ψPER
2,3 ( 3

16
) 0 ψPER

3,0 ( 1
16

) 0 0 0 0 0 0

1 ψPER
0,0 ( 4

16
) ψPER

1,0 ( 4
16

) ψPER
1,1 ( 4

16
) ψPER

2,3 ((0) ψPER
2,0 ((0) ψPER

2,1 ((0) ψPER
2,2 ((0) 0 ψPER

3,7 ((0) ψPER
3,0 ((0) 0 0 0 0 0

1 ψPER
0,0 ( 5

16
) ψPER

1,0 ( 5
16

) ψPER
1,1 ( 5

16
) ψPER

2,3 ( 1
16

) ψPER
2,0 ( 1

16
) ψPER

2,1 ((0) ψPER
2,2 ( 1

16
) 0 0 ψPER

3,0 ( 1
16

) 0 0 0 0 0

1 ψPER
0,0 ( 6

16
) ψPER

1,0 ( 6
16

) ψPER
1,1 ( 6

16
) ψPER

2,3 ( 2
16

) ψPER
2,0 ( 2

16
) ψPER

2,1 ( 2
16

) ψPER
2,2 ( 2

16
) 0 0 ψPER

3,7 ((0) ψPER
3,0 ((0) 0 0 0 0

1 ψPER
0,0 ( 7

16
) ψPER

1,0 ( 7
16

) ψPER
1,1 ( 7

16
) ψPER

2,3 ( 3
16

) ψPER
2,0 ( 3

16
) ψPER

2,1 ( 3
16

) ψPER
2,2 ( 3

16
) 0 0 0 ψPER

3,0 ( 1
16

) 0 0 0 0

1 −ψPER
0,0 ((0) ψPER

1,1 ((0) ψPER
1,0 ((0) ψPER

2,2 ((0) ψPER
2,3 ((0) ψPER

2,0 ((0) ψPER
2,1 ((0) 0 0 0 ψPER

3,7 ((0) ψPER
3,0 ((0) 0 0 0

1 −ψPER
0,0 ( 1

16
) ψPER

1,1 ( 1
16

) ψPER
1,0 ( 1

16
) ψPER

2,2 ( 1
16

) ψPER
2,3 ( 1

16
) ψPER

2,0 ( 1
16

) ψPER
2,1 ( 1

16
) 0 0 0 0 ψPER

3,0 ( 1
16

) 0 0 0

1 −ψPER
0,0 ( 2

16
) ψPER

1,1 ( 2
16

) ψPER
1,0 ( 2

16
) ψPER

2,2 ( 2
16

) ψPER
2,3 ( 2

16
) ψPER

2,0 ( 2
16

) ψPER
2,1 ( 2

16
) 0 0 0 0 ψPER

3,7 ((0) ψPER
3,0 ((0) 0 0

1 −ψPER
0,0 ( 3

16
) ψPER

1,1 ( 3
16

) ψPER
1,0 ( 3

16
) ψPER

2,2 ( 3
16

) ψPER
2,3 ( 3

16
) ψPER

2,0 ( 3
16

) ψPER
2,1 ( 3

16
) 0 0 0 0 0 ψPER

3,0 ( 1
16

) 0 0

1 −ψPER
0,0 ( 4

16
) ψPER

1,1 ( 4
16

) ψPER
1,0 ( 4

16
) ψPER

2,1 ((0) ψPER
2,2 ((0) ψPER

2,3 ((0) ψPER
2,0 ((0) 0 0 0 0 0 ψPER

3,7 ((0) ψPER
3,0 ((0) 0

1 −ψPER
0,0 ( 5

16
) ψPER

1,1 ( 5
16

) ψPER
1,0 ( 5

16
) ψPER

2,1 ( 1
16

) ψPER
2,2 ( 1

16
) ψPER

2,3 ( 1
16

) ψPER
2,0 ( 1

16
) 0 0 0 0 0 0 ψPER

3,0 ( 1
16

) 0

1 −ψPER
0,0 ( 6

16
) ψPER

1,1 ( 6
16

) ψPER
1,0 ( 6

16
) ψPER

2,1 ( 2
16

) ψPER
2,2 ( 2

16
) ψPER

2,3 ( 2
16

) ψPER
2,0 ( 2

16
) 0 0 0 0 0 0 ψPER

3,7 ((0) ψPER
3,0 ((0)

1 −ψPER
0,0 ( 7

16
) ψPER

1,1 ( 7
16

) ψPER
1,0 ( 7

16
) ψPER

2,1 ( 3
16

) ψPER
2,2 ( 3

16
) ψPER

2,3 ( 3
16

) ψPER
2,0 ( 3

16
) 0 0 0 0 0 0 0 ψPER

3,0 ( 1
16

)





The matrix is sparse for j ≥ 5
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Using Daubechies to compute wavelet coefficients

For Daubechies wavelets the right preconditioning does not
work: We have to use Ψ>R as a left preconditioner.
We have:

Ψ>R (ΨR −∆σ,εΨ)Xn = −Fσ,ε(DPER
n ).

Problem: Ψ>RΨR is not the identity due to rounding errors
because 1

N is of order the machine precision. The lower right part
of the matrix Ψ>RΨR has “garbage”.

But anyway the system

Ψ>R (ΨR −∆σ,εΨ)Xn = −Fσ,ε(DPER
n ),

is easier to be solved with the use of Krylov methods: (more
precisely with the TFQMR method with Arnoldi base construction).
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Using Daubechies to compute wavelet coefficients

With these tools we get the following regularity graph of the
Keller-GOPY attractor. The results are obtained by using a sample
of 224 points in S1 and the Daubechies Wavelet with 10 vanishing
moments.

The detection of the regularity leap for
another parameterization.

How we compute the regularity of a
particular instance of ϕ.

As before, we can detect the pinched point in “in O(N ) time” and
with less iterates than Haar.
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Conclusions

Our aim was the study of the use of wavelets in the numerical
computation of invariant objects framework. That is, give a

generic way to get ϕ ∼ d0 +
N−1∑
`=0

d`ψ
PER
` (θ). For us, ϕ is a SNA.

Theoretical point of view

1 Due to the geometry and topology of ϕ, we have introduced
and justified the use of Bs

∞,∞ in the SNA’s framework.
2 Under “Keller’s assumptions”, we have classified ϕ ∈ Bs

∞,∞
and related the wavelet coefficients of ϕ, DPER, with such
classification. Moreover, such relationship can be used, for
example, when facing the fractalization route.

3 Due to the volume of calculations involved, we have
introduced and justified the use of Newton’s Method, Krylov
methods and the FWT to calculate DPER in our framework.
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Conclusions

Theoretical point of view

5 With respect to Newton’s Method, we have related the use of
the Trapezoidal rule with the initial seed DPER

0) .

6 Moreover, in the Haar’s case we have related λϕ with the
convergence of Newton’s Method and, also, we have found an
explicit solution of the linear system, via a permutation matrix
P (and a precondition strategy).

7 We have proved that we can take the orbit of a point as
a−J [n] (the initial seed of the FWT).
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Conclusions

Algorithmic point of view

1 We have expressed the Invariance Equation as “matrix×vector”.
Using the same idea (and the same goals), we have compacted the
Jacobian matrix JFσ,ε = ΨR −∆σ,εΨ.

2 To work and compute with Ψ and ΨR in the Daubechies case, we
have rephrased the Daubechies – Lagarias algorithm from R to S1.
Using it and the inherited properties of the Daubechies wavelets, we
have derived properties of Ψ and ΨR .

3 Moreover, we have found good precondition strategies to solve the
system in a feasible way. As a consequence, we can go fast and
deep. In particular, when ψ(x) is the Haar wavelet, we have
performed a strategy to get the explicit solution.

4 Focusing in the FWT performance, we have sorted a big signal of
the attractor ϕ faster than “fast sorting algorithms” using Birkhoff’s
Ergodic Theorem.
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