Combinatorial
Scheduling Theory

Ronald L. Graham

Things had not been going at all well in the assembly section of the Acme
Bicycle Company. For the past six months, the section had consistently
failed to meet its quota and heads were beginning to roll. As newly appointed
foreman of the assembly section, you have been brought in to remedy this
sad state of affairs. You realize that this is your big chance to catch the eye
of upper management, so the first day on the job you roll up your sleeves and
begin finding out everything you can about what goes on in the section.

The first thing you learn is that the overall process of assembling a bicycle
is usually broken up into a number of specific smaller jobs:

FP —Frame preparation which includes installation of the front fork and
fenders.

FW—Mounting and aligning front wheel.

BW—Mounting and aligning back wheel.

DE —Attaching the derailleur to the frame.

GC —Installing the gear cluster.

CW—Attaching the chain wheel to the crank.

CR —Attaching the crank and chain wheel to the frame.

RP —Mounting right pedal and toe clip.

LP —Mounting left pedal and toe clip.

FA —Final attachments which includes mounting and adjusting handle-
bars, seat, brakes, etc.

You also learn that your recently departed predecessor had collected reams
of data on how long each of these various jobs takes a trained assembler to

184 Combinatorial Scheduling Theory

The Acme Bicycle

Chainwheel . Tire

Pedal . Hub (high-flange type)

. Chain . Chainstay

Rear derailleur . Lug

. Front derailleur . Fender

. Caliper brake . Fork crown

Brake lever . Fork

Brake cable . Wheel dropout

Handlebars . Seat cluster lug

. Handlebar stem . Seat stay

. Seat (saddle) . Seat tube

. Seat post . Steering head

. Quick-release skewer (for . Tension roller, rear
instant wheel removal) derailleur

. Bottom bracket . Top tube

. Gear-shift lever for rear . Fender brace
derailleur . Down tube

. Freewheel gear cluster . Cotterless crank

. Rim . Rear drop out

. Spoke . Headset (top and

. Valve bottom)

1.
2.
3
4.
5
6
7.
8.
9.

Ronald L. Graham 185

perform, which he had conveniently summarized in the following table:

Job: FP FW BW DE GC Ccw CR RP LP FA
Time: 7 7 7 2 3 2 2 8 8 18

Because of space and equipment constraints in the shop, the 20 as-
semblers in the section are usually paired up into 10 teams of 2 people each,
with each team assembling one bicycle at a time. You make a quick calcula-
tion: One bicycle requires altogether 64 minutes of total assembly time, so a
team of two should manage this in 32 minutes. This means that in an eight-
hour day, each team could assemble 15 bicycles and with all 10 teams doing
this, your quota of 150 bicycles per day can be met. You can already taste
your next promotion.

Your enthusiasm dwindles considerably, however, when you realize that
bicycles-can’t be put together in a random order. Certain jobs must be done
before certain others. For example, it is extremely awkward to mount the
front fork to the frame of a bicycle if you have first already attached the
handlebars to the fork! Similarly, the crank must be mounted on the frame
before the pedals can be attached. After lengthy discussions with several of
the experienced assemblers, you prepare the following chart showing which
jobs must precede which others during assembly.

must be
This job preceded by These jobs
FA FP, FW, BW, GC, DE
BW GC, DE
GC, CwW DE
LP, RP CR, CW, GC
CR cw

In addition to these mechanical constraints on the work schedule, there are
also two rules (known locally as *‘busy’’ rules) which management requires
to be observed during working hours:

Rule 1: No assembler can be idle if there is some job he or she can be
doing.

Rule 2: Once an assembler starts a job, he must continue working on the
job until it is completed.

The customary order of assembling bicycles at Acme Bicycle has always
been the one shown in the schedule in Figure 1. The schedule shows the ac-
tivity of each assembler of the team beginning at time zero and progressing
to the time of completed assembly, called the finishing time, some 34
minutes later. Although this schedule obeys all the required order-of-assem-
bly constraints given above, it allows each team to complete only slightly
over 14 bicycles per day. Thus the total output of the section is just over 140
bicycles per day, well under the quota of 150.

186 Combinatorial Scheduling Theory

7 7 8 8
Assembler 1 FP l Fw l Lp l RP V
Assembler 2 |DE ICRIGC I BW l FA
2 2 2 3 7 18 34
finishing
time

Figure 1. Standard assembly schedule.

After wasting numerous pieces of paper trying out various alternative
schedules with no success, you decide, in haste, to furnish all the assemblers
with rented all-electric tools. This decreases the times of each of the Jjobs by
exactly one minute, so the total time required for all the individual jobs is
only 54 minutes. With a little luck, you hope it will be possible to push the
output per team to nearly 18 bicycles per day. However, at the end of the
first week using the rented tools, you notice that production has now gone
down to less than 14 bicycles per day. This seems hard to understand so you
start jotting down a few possible schedules using the new reduced job times.
Surprisingly, you find the best you can do is the one shown in Figure 2. All
schedules obeying Rules 1 and 2 take at least 35 minutes for each assembled
bicycle!

So you return the rented electrical tools and in desperation decide on a
brute force approach: you hire 10 extra assemblers and decree that from
now on, each of the 10 teams will consist of three assemblers working
together to put the miserable bicycles together. You realize that you have
increased labor costs by 50%, but you are determined to meet the quota or
else.

It only takes you two days this time to decide that something is seriously
wrong. Production has now dropped off to less than 13 bicycles per day for
each 3-man team! Reluctantly, you again outline various schedules the
teams might use. A typical one is shown in Figure 3. Curiously enough, you
discover that every possible schedule for a 3-man team obeying Rules 1 and
2 requires 37 minutes for each assembled bicycle. You spend the next few
days wandering around the halls and muttering to yourself “Where did I go
wrong?” Your termination notice arrives at the end of the week.

This parable actually has quite serious implications for many real
scheduling situations. Indeed, some of the earliest motivation for studying
these types of scheduling anomalies arose from work on the design of com-

6 6 6 17

Assembler 1 Fp I FwW BW l FA W
Assembler 2 gﬂccﬁl LP RP V

1121 7 7 35
finishing
time

Figure 2. Best schedule with reduced job times.

Ronald L. Graham 187

7 7 7 18
Assembler 1 FP [Fw BW FA V
Assembler 2| PH GC LP
2] 3
Assembler 3 CWl CH] RP
2 22 8 39
finishing
time

Figure 3. Best schedule for a 3-man team.

puter programs for antiballistic missile defense systems. There it was dis-
covered (fortunately, by simulation) that decreasing job times and increasing
computer resources could result in more time being used to finish the whole
job. (An interesting discussion of this well-known *‘too-many-cooks-spoil-
the-broth™ effect, sometimes called “Brooks’s Law’’, can be found in the
book ‘“The Mythical Man-Month™ by Frederick Brooks.) Furthermore, it
was found that adding more computing power to the system was no guaran-
tee that the assigned jobs would all be completed on time. In a missile
defense system, this was clearly a cause for some concern.

One might well ask just where it was that our hypothetical foreman at
Acme Bicycle did go wrong. It will turn out that he was a victim of Rules 1
and 2 (and a little bad luck). The short-sighted greediness they demand
resulted, as if often does, in an overall loss in performance of the system as a
whole. In each case, assemblers were forced (by Rule 1) to start working on
Jobs which they couldn’t interrupt (by Rule 2) when a more urgent job even-
tually came up.

Generally speaking, scheduling problems arise in almost all areas of
human activity. Typically such problems can range from the allocation of
manpower and resources in a highly complex project (such as the Viking
Mars mission which required coordination of the simultaneous activities of
more than 20,000 people or the instantaneous control of a modern elec-
tronic telephone network) to something as (relatively) simple as the prepara-
tion of a 7-course French meal. During the past few years, a number of
scheduling models have been rather thoroughly studied in order to under-
stand just why the unpredictable behavior like that in our bicycle example
occurred, how bad such effects can ever be and how they can be avoided or
minimized. What we will do in this article is to describe what has been
recently learned about some of these problems and to point to the exciting
new directions that researchers are beginning to pursue. Frequently we will
examine a particular problem from several different viewpoints, showing
how a variety of approaches can furnish us with a powerful arsenal of tools.

A very important aspect of this subject, both from the point of view of un-
derstanding specific scheduling procedures as well as for discovering exactly
what is true and what is not true, is the use of examples. Indeed, much of the
article will be devoted to various examples which often illustrate very
vividly the unexpected subtleties that can occur in this field. From this dis-
cussion we hope that the reader will gain insight not only into scheduling

188 Combinatorial Scheduling Theory

theory itself, but also into the kind of productive interaction which can (and
often does) occur between mathematics (in this case, combinatorics), com-
puter science (in this case, the theory of algorithms), and problems from the
real world.

A Mathematical Model

In order to discuss our scheduling problems in a somewhat more precise
way, we need to isolate the essential concepts occurring in the bicycle ex-
ample. We do this by describing an abstract model of the scheduling situa-
tion. The model will consist of a system of m identical processors (before,
the assemblers) denoted by P,, P,, ... ,Py, and a collection of tasks A, B,
C,..., T,...(before, the various jobs FP, BW, . ..) which are to be per-
formed by the processors according to certain rules. Any processor is
equally capable of performing any of the tasks although at no time can a
processor be performing more than one task. Each task T has associated
with it a positive number #T) known as its processing time (before, these
were the job times). Once a processor starts performing (or executing) a task
T, it is required to continue execution until the completion of T, altogether
using #(7) units of time (this was Rule 2 before).

Between various pairs of tasks, say 4 and B, there may exist precedence
constraints (before, these were the “order-of-assembly” constraints), which
we indicate by writing 4 — B or by saying that A4 is a predecessor of B and
that B is a successor of 4. What this signifies is that in any schedule, task 4
must always be completed before task B can be started. Of course, we must
assume that there are no cycles in the precedence constraints (for example,
A — B, B — C, and C — A) since this would make it obviously impossible
to finish (or even start) these tasks. If at any time a processor can find no
available task to execute, it becomes idle. However, a processor is not
allowed to be idle if there is some task it could be performing (this was Rule
1 before).

The basic scheduling problem is to determine how the finishing time
depends on the processing times and precedence constraints of the tasks, the
number of processors, and the strategies used for constructing the sched-
ules. In particular, we would like a method to determine schedules that
have the earliest possible finishing time.

Performance Guarantees

The approach we will focus on for measuring the performance of our
scheduling procedures will be that of “worst-case analysis.” What we try to
determine in this approach is the worst possible behavior that can occur for
any system of tasks satisfying the particular constraints under consideration.

Ronald L. Graham 189

As a simple example of this approach, we might want to know just how
much the finishing time can increase because of a decrease in the processing
times of the individual tasks. The answer is given by the following result
(due to the author) which dates back to 1966 and is one of the earliest results
of this type in the literature.

Let f denote the finishing time of a schedule for m processors using times
HA), (B), ... and let f* denote the finishing time of a schedule using process-
ing times ¢'(4), t'(B),....Ift'(T) < «(T) for all tasks T, then

Lo, 1
F=2

m
For example, if there are two processors, m = 2; so '/, < 3/,. This means
that there can be an increase of at most 50% in finishing time if processing
times are decreased.

This bound is a performance guarantee. It asserts that no matter how
complicated and exotic a set of tasks with its precedence constraints and
processing times happens to be, and no matter how cleverly or stupidly the
schedules are chosen, as long as ¢’ (T) =< ¢ (T) for all tasks T (and this allows
for the possibility that ¢'(T) = «(T) for all T) then it is always true that the
ratio of finishing times '/, is never greater than 2 — (Y/,,). Furthermore, it
turns out that this bound of 2 — (Y/,,) cannot be improved upon. What we
mean by this is that we can always find examples for which "/, = 2 — (1/,,).
We give such an example for m = 6. In this example the times #(T) are as
follows:

Task T: A B C D E F G H I J K L M
Time (7): 7 4 5 6 5 3 7 6 5 4 3 12

There are no precedence constraints and #(T) = ¢'(T) for all tasks 7. In Fig-
ures 4 and 5 we show the worst and best possible schedules. The corre-
sponding finishing times are f* = 22 and f = 12, respectively. The ratio 7/, is
22/, which is exactly equal to 2 — (!/,,) when m = 6.

In the box on p. 192-193 we give a brief sketch showing how a result of
this type can be proved. With such a result, it is possible to know in ad-

10 2
A oty M W70
Bl on
€ '
D 61 K 4
£ 5] T s
F 3| G 7

Figure 4. The worst possible schedule.

190 Combinatorial Scheduling Theory

M 12
7 C 5
7 E
D 6 H 6
I B 4| F g
L K 4| L,

Figure 5. The best possible schedule.

vance the possible variation in f and so to build in a suitable safety factor
(of 2, for example) to allow for the potential increase in finishing time. This
could be extremely valuable in situations such as the previously mentioned
ABM defense system application.

Critical Path Scheduling

One of the most common methods in use for constructing schedules involves
what is known as ‘“‘critical path” scheduling. This forms the basis for the
construction of so-called PERT networks which have found widespread use
in project management. The basic idea is that any time a processor has
finished a task, it should try to choose the “most urgent” task as the next
task to start working on. By ‘“‘most urgent” we mean that task which heads
the chain of unexecuted tasks which has the greatest sum of processing

2 \ \/
@ — @ —*‘

Figure 6. Times and precedence constraints for bicycle assembly at

Acme Bicycle.

Ronald L. Graham 191

times. This “‘longest” chain is termed a “critical path” since its tasks are the
most likely to be the bottlenecks in the overall completion of the whole set of
tasks. In critical path (CP) scheduling, tasks which head the current critical
paths are always chosen as the next tasks to execute.

As an example let us look again at our bicycle assembly example. We can
combine the information on task times and precedence constraints in Figure
6. At the start the critical paths are FP - FW — FA and FP —
BW — FA, both with length 32. This, in a CP schedule, FP is started first.
Once FP is started, the new critical path becomes DE — GC —
BW — FA which has length 30. Hence, in a CP schedule, the other proces-
sor (assembler) will start on DE. If we continue this scheduling strategy,
we will finally end up with the schedule shown in Figure 7. Note that this

7 7 18
FP FW FA
DH GCjCW BW CR Lp RP
2 3 2 7 2 8 8

32
Figure 7. A critical path schedule for bicycle assembly.

schedule has a finishing time of 32 which is clearly the best we could hope
for. If only our hypothetical foreman had known about CP scheduling.

Of course, this example is really too small to show the power of CP
scheduling. The extensive literature on this technique attests to its wide
usefulness in a variety of applications. Nevertheless, from our point of
view of worst-case analysis, it should be noted that CP scheduling can per-
form very poorly on some examples. In fact, not only is there no guarantee
that CP scheduling will be close to optimal, but it can happen that this
procedure will result in the worst schedule possible!

Here is an example with four processors. The tasks, processing times and
precedence constraints are shown in Figure 8, as are a CP schedule with
finishing time fp = 23 and an optimal schedule with finishing time fopy = 14.
Note that the ratio of finishing times fcp/fopr is equal to 23/,,, only slightly
less than 2 — (*/,) which (according to our performance guarantee result) is
the worst possible value of the ratio for any two finishing times for four
processors.

Scheduling Independent Tasks

Critical path scheduling gives a rational and, in practice, useful method for
constructing schedules. We did find, however, that it is possible for a CP
schedule to be very bad. In fact, there is no guarantee that CP scheduling
won’t produce the worst possible schedule, giving a finishing time ratio
(compared to least possible finishing time) of 2 — (!/,,). There are special sit-
uations, though, where CP scheduling will never perform this poorly. The

192 Combinatorial Scheduling Theory

Performance Guarantee: A Proof

In order to give the mathematically-minded reader a feeling for how &
the bound of 2 — (!/,,) on the ratio 7'/, is obtained, we outline a proof.
Consider a schedule which uses the execution times #'(T) < ¢(T) and

' has finishing time f':

" V17772,
P; l C

D

In particular, let us look at an interval of time during which some
processor, say P;, is idle; such intervals are denoted above by the sym-
bol . From the figure we see that P; became idle after task H was
completed and did not start executing tasks again until task 4 was
begun. The only reason that 4 wasn’t started immediately after the
| completion of // was that some predecessor of 4, say D, was not yet
completed at that time. Now either D was already being executed
when H was completed or D hadn’t yet been started. If it hadn’t yet
been started, then again this must be caused by one of D’s predeces-
sors, say E, not being finished then. By continuing this argument, we
conclude that there must be a chain of tasks...C > E —
D — A4 ... which are being executed at all times that P; is idle.
The same ideas show in fact that there must be some chain € of tasks

with the property that some task of € is being executed whenever any ¢

processor is idle. Let +' (¥) denote the sum of the execution times of all
the tasks in the chain € and let ¢’ () denote the sum of all the idle
times in the schedule. It follows from what we have just said that

') =(m—-11(%) (1)

since the only time a processor can be idle is when some task in € is

being executed, and then we must have at most m — 1 processors actu- |

ally being idle.
Of course

fZH®) (2)

since the tasks of € form a chain and consequently must be executed
one at a time in any schedule. Thus, if t* denotes the sum of all the
decreased execution times and 7 denotes the sum of all the original ex-
ecution times, we see that

Ronald L. Graham 193

f= % t* +t' (D)) (since between times 0 and
[’ each processor is
either executing a task or
is idle)

(t*+(m— 1D (@) (by (1))

(F+(m—1)t (%)) (since t' (T) = t(T) for
all T)

<L +m-1p (by (2))

i(t+(m—1)f) (since t* =)

—1— (mf + (m— 1)f) (since 7 cannot exceed

" mf)

1
= (Z—E)f'

In other words,

S <y _1
T Tm

which is the desired bound.

most common of these, which we now take up, is the situation where there
are no precedence constraints among the tasks.

Imagine that you are the supervisor of a typing pool in a large company.
Part of your job each morning is to assign the various papers submitted the
night befo e to particular typists in the pool. Because of differences in type-
writers, internal page number references, etc., each paper must be typed by a
single tyrist. How should you assign papers so as to minimize the time
required to complete all the papers?

As we saw in the example in Figure 8, a bad CP schedule can take almost
twice as much time as a good schedule. But if CP scheduling is used for a sit-
uation similar to the typing pool, then the following inequality always holds:

& < i — L .

Sforr — 3 3m
Thus, the CP schedule for independent tasks (no precedence constraints) al-
ways finishes within 33 !/,% of the optimum finishing time. Furthermore, as
in the case of the 2 — (1/,,) bound, it is not hard to find examples which actu-

194 Combinatorial Scheduling Theory

Task:. A B C D E G F H I J K L
1 11 3

Time: 1
H
ok‘ L
Precedence Ae ol ——=r
constraints: Be ./

G D
critical path schedule
fop =23
A H E
B I F
C J G

p| «x L %

optimal schedule 1
forr = 14
Figure 8. A critical path schedule does not always yield the best
results. In this example, the critical path schedule for four processors is
nearly twice as long as the optimal schedule.

ally achieve the bound (*/;) — (!/,,) showing that it is not possible in general
to improve the bound. In Figure 9 we give such an example for m = 5. A
quick calculation shows that the ratio fep/fopr is equal to /5 = (4/;) — (Y,5)
which is just the bound (4/;) — (V/,,,) with m = 5.

NP-complete Problems

At this point one might well ask, ‘““Why should I settle for a schedule which
is not best possible? Why not use a method that will always generate the
schedule with the least possible finishing time?” A laudable ambition, to be
sure. After all, any particular set of tasks you might be faced with is a finire

Ronald L. Graham 195

Task: A B (o D E F G H / J K
Time: 9 9 8 8 6 6

A . r /%
B 9 ! 5

c 8 o/ 7 /

D 3 6 // /V/

E ; F ; ‘/

critical path (CP) schedule

D 8 E 7 /
I 5 5

forr =15
optimal schedule

._
S
~

Figure 9. A critical path schedule and an optimal schedule for five
processors. Critical path scheduling without precedence constraints,
such as in a typing pool, produces results no worse than 4/3 of the op-
timal schedule.

set so you could always just examine all possible schedules and choose the
best one.

The trouble with this brute force approach is that the number of possible
schedules grows so explosively that there is no hope of looking at even a
small fraction of them when the number of tasks is large. If we start with n
tasks, then the number of different schedules with 2 processors is 2 mul-
tiplied by itself n times, or 2*. Even for relatively small numbers n, 2" is a
very large number. For example, when n = 70, even if we could check
1,000,000 schedules each second, it would require more than 300,000 cen-
turies to check all 27 possible schedules. What we really need is a procedure
(or, as computer scientists call it, an algorithm) which will not blow up so
drastically as the number of tasks increases.

Unfortunately, this goal is very likely to remain beyond our reach for all
time. This gloomy prospect is the result of the fundamental work of Stephen

196 Combinatorial Scheduling Theory

Cook of the University of Toronto, who in 1972 introduced the concept of
“NP-complete” problems. This class of problems is now known to contain
literally hundreds of different problems notorious for their computational in-
tractability. NP-complete problems, which occur in areas such as computer
science, mathematics, operations research and economics, have two impor-
tant properties: First, if any particular NP-complete problem had an ef-
ficient solution procedure then all of them would. Second, all methods cur-
rently known for finding general solutions for any of the NP-complete
problems can always blow up exponentially in a manner similar to the be-
havior of 2*. Mathematicians strongly suspect (but have not yet proved)
that our inability to discover an efficient solution procedure is inherent in
the nature of NP-complete problems: they believe that no such procedure
can exist. We illustrate in the box on p. 197 one of the more well-known
examples of an NP-complete problem, the so-called Traveling Salesman
Problem.

As the reader may by now suspect, scheduling problems are, in general,
NP-complete. In fact, even without precedence constraints and using only
two processors, scheduling is still an NP-complete problem. This is the basis
for the pessimistic outlook we took at the beginning of the section. One of its
effects has been to redirect much of the earlier effort of trying to find good
methods for determining exact solutions to the problems to the more fruitful
direction of determining good approximate solutions easily. What we will do
next is to look at the scheduling problem for two-processor systems from
this viewpoint.

Getting Closer to the Best Schedule

Critical path scheduling for tasks having no precedence constraints is, as we
have seen, always guaranteed to finish within a factor of 4/, of the shortest
possible finishing time. But to determine a CP schedule we must arrange the
processing times of the n tasks in decreasing order. This sorting takes time:
for n tasks it can be done in an amount of time which grows like n logyn,
which is only slightly faster than linear growth in n.

Suppose now that we are willing to do more work, but we want an answer
which we know would be very close to the best possible. One approach for
doing this is to choose, for some integer k, the 2k longest tasks and construct
the best possible two-processor schedule for them; then schedule the
remaining tasks arbitrarily. If we denote the finishing time of this schedule
by f; then

S |
Foer = VT 2552

For a set of n tasks, the whole procedure can be done in at most
nlog,n + 22* operations, where the term #n log,n comes from choosing and

Ronald L. Graham 197

The Traveling Salesman Problem

Olympia

Austin Rouge

The problem of finding the shortest route which visits each of a given
collection of “cities,” finally returning to the city from which it began,
is traditionally called the Traveling Salesman Problem. Such problems
occur in a variety of contexts, e.g., collecting the money from coin tele-
phones, periodic servicing of a dispersed set of vending machines, se-
curity guard inspections of locations in a factory, delivery routes for a
product to different stores in a city, etc.. In the figure below we show
the state capitals of the states west of the Mississippi with approxi-
mate road mileages between some of them. The route shown in bold
has a total length of 8119 miles. However, the shortest route has length
only 8117 miles. Can you find it?

sorting the 2k longest tasks and the term 22* comes from examining all
possible schedules on two processors. Since & is a fixed number, the
growth of this function as » increases is still moderate.

For example, choosing & = 3, we can guarantee that f,/fopr < °/s with an
amount of work proportional to at most nlog,n + 64. More generally, any
desired degree of accuracy can be guaranteed provided we are willing to
pay for it. Unfortunately the price we may have to pay can increase very
rapidly. For instance, to guarantee a value of f; within 2% of the optimum
could take time proportional to nlog,n + 2, which is sufficient to use up
more than a few computer budgets.

This behavior should not be too surprising. After all, if an exponential
amount of time seems to be required to find an optimal solution, we might

198 Combinatorial Scheduling Theory

well expect the cost of approximate solutions to behave similarly as their
guaranteed accuracy increased. What is surprising is that this exponential
increase in cost can be avoided. Oscar Ibarra of the University of Min-
nesota and Chul Kim of the University of Maryland have very recently de-
veloped an algorithm for producing schedules with finishing times f;, which

are guaranteed to satisfy
Je <q41

fOPT - k

and which requires at most only kn? steps. The function kn? is an example of
a “polynomial” in k and n. When k and n become large, the value of kn? is
much smaller than the exponential function 2% The ideas underlying this
procedure involve a clever combination of dynamic programming and
“rounding’ and are beyond the scope of this article. However, this type of
approximation may well be able to guarantee very nearly optimal results
using a reasonable amount of computer time.

Finding the Best Schedule in Special Cases

Even though the goal of finding efficient techniques for constructing optimal
schedules appears, in general, to be permanently out of reach, there are sev-
eral interesting special cases of the scheduling problems for which this is ac-
tually possible. In this section we would like to discuss two of these cases
and briefly describe the philosophy behind the various approaches in order
to help understand why they work.

Much of the complexity in our scheduling problems comes from the
complicated structure the precedence constraints can have and the complex
number-theoretic properties the processing times can have. In our first
special case, we restrict both of these factors: we assume that all processing
times are equal to 1, and that the precedence constraints are tree-like. What
this means is that every task 7 has at most one successor, i.e., there is at
most one arrow leaving 7. We show an example of tree-like precedence con-
straints in Figure 10.

It turns out with these particular restrictions critical path schedules are al-
ways optimal. This result, proved in 1961 by T.C. Hu of the University of
California, was one of the first results in the field. To construct critical path
schedules in this case we simply assign to each task T the length L(T) of the
longest chain headed by 7. This number L(T) is also known as the level of
T. (We have assigned levels to tasks in Figure 10.) Any time a processor is
available, we always choose a task which has the highest level possible.
Figure 10 also shows a CP schedule on 3 processors for the tasks displayed
in that Figure.

The second case we examine will allow the complexity of arbitrary (not
necessarily tree-like) precedence constraints; but we will still require all
processing times to be 1 and, in addition, we only allow rwo processors.

Ronald L. Graham 199

A D G] P Q
B E H K M
C F 1 N (0] %
for =7

(b)
Figure 10. For tasks of equal length connected with tree-like prece-
dence constraints (a), CP schedules are optimal (b).

There are now known three essentially different methods for producing op-
timal schedules in this situation, each somewhat complex; the box on p.
201-203 is devoted to these methods.

From these examples we hope the reader can get a feeling for the variety
of techniques which can be successfully applied to special scheduling
problems. One might hope that extensions of these ideas would lead to
similarly successful algorithms for related questions, e.g., for the problem of
three processors with all execution times equal to 1. At present, however,
this tantalizing question remains completely unanswered. It should be noted
that the “*slightly” generalized problem having two processors with process-
ing times of either 1 or 2 has recently been shown to be NP-complete. As we
have previously mentioned, this provides strong theoretical evidence that in

200 Combinatorial Scheduling Theory

this case no efficient algorithms can exist which are guaranteed to produce
optimal schedules.

Bin Packing

One of the most interesting types of scheduling problems is one which turns
the usual question around. Instead of fixing the number of processors and
trying to finish as soon as possible, we can ask how few processors can be
used and still complete all the tasks by a given deadline d. (For the time
being, we shall restrict ourselves to the case where there are no precedence
constraints between the tasks.) This new scheduling problem commonly
goes under the name of bin packing. In the standard statement of this
problem we are given a set of items /,, I,, . . . with item I, having weight w.
The object is to pack all the items in a minimum number of identical contain-
ers, called bins, so that no bin contains items having a total weight greater
than some fixed number W which is called the capacity of the bin. (In the
scheduling analogy, the bins are processors: we try to pack jobs into as few
processors as possible, subject to the condition that no processor can be as-
signed jobs whose total time exceeds the processor’s capacity, namely, the
deadline by which all jobs must be completed.)

The bin packing problem occurs in numerous practical situations and in a
variety of guises. For example: a plumber may be trying to minimize the
number of standard-length pipes needed from which some desired list of pipe
lengths can be cut; a paper producer must furnish customers with various
quantities of paper rolls of assorted widths which he forms from rolls of a
standard width by “‘slicing,” and he would like to minimize the number of
standard rolls he must use; or a television network would like to schedule its
advertisers’ commercials of varying lengths into a minimum number of
standard length station breaks. Another easily pictured example is that of a
person confronting a standard postage stamp machine with an armful of as-
sorted letters in one hand and a handful of quarters in the other.

In general, bin packing problems can be extremely difficult. At present,
the only known methods for producing optimal packings, i.c., those using the
minimum number of bins, involve examining essentially all possible pack-
ings and then choosing the best one. For very small problems this may be
feasible but as soon as the problem size becomes moderately large, these
techniques are hopelessly inadequate. See, for example, the problem in Fig-
ure 11. The approach commonly taken to circumvent these difficulties is to
design efficient heuristic procedures which may not always produce optimal
packings but which are guaranteed to find packings which are reasonably
close to optimal. We have already seen examples of this philosophy in some
of the earlier scheduling problems. Some of the deepest results in the theory

Ronald L. Graham 201

Two-Processor Algorithms

There is now a variety of methods for determining an optimal
2 schedule for two processors dealing with tasks of identical length. §
Here are three of them:

§ The FKN algorithm (after M. Fujii, T. Kasami, and K. Ninomiya
(1969)).

The idea behind this method is that we can execute two tasks 4 and B
during the same time interval only if they are incomparable, i.e., if nei-
ther task must be finished before the other is started. First create a
diagram in which we connect two tasks if and only if they are incompa-
rable. (This is called the incomparability graph of the set of tasks.)

D
A OF 0&——OH
F
B O1
C 07]
Incomparability
graph

Then find the largest number of lines between tasks in the dia-
gram so that no two go to a common task. (In our example, the
lines between A-B, C-D, E-F, G-I, and H-J form such a collec-
tion.) These pairs designate the tasks to execute simultaneously; the
other tasks we execute one at a time. (Once in a while we may have
to do a mild amount of interchanging in order to actually produce a
valid schedule. For example, if we have the set of four tasks P, Q, R,
and § with precedence constraints P — Q and R — §, then the FKN
algorithm can choose the pairs P-S and R—-Q to execute simulta-
neously, which is impossible. However, we can exchange R and §
and execute P-R and S—Q with no trouble.) Since general methods
are known for finding the largest number of disjoint lines in a graph,
requiring at most »#>?2 steps for graphs with n points, the FKN method
does indeed satisfy our requirements of efficiency and optimality.

The CG algorithm (after Edward Coffman of the University of
California and Ronald Graham (1972)).

The approach here is much in the spirit of the level algorithm discussed
on p. 198. The idea is that we are going to assign numbers to the tasks
which will depend on the numbers assigned to all the successors of a

202 Combinatorial Scheduling Theory

task, and not just on a single successor as was the case for the level
algorithm. In order to apply this algorithm we must first remove all ex-
traneous precedence constraints. In other words, if 4 — B and
B — C, then we do not include 4 — C since this is implied automati-
cally. (Removing these extraneous edges is called forming the “transi-
tive reduction” of the set of precedence constraints; it can be done in at
most n*3! operations for a set of n tasks.) The CG algorithm proceeds
by assigning the number 1 to some task having no successor and there-
after, for each task which has all its successors numbered, forming the
decreasing sequence of its successors’ numbers and choosing that task
which has the smallest sequence in so-called “dictionary”” order. (For
example, (5,3,2) is earlier in “dictionary”’ order than (6,1),(5,4,2) and
(5,3,2,1).) After all tasks have been numbered, using the numbers
from 1 to n, the schedule is then formed by trying to execute tasks in
order of decreasing numbers beginning with the task having number n.

In the figure below we give a CG numbering with some of the suc-
cessor number sequences also shown.

Q3

(7,6,2,1)

Note that after D, E, F, G, H, I, and J have been numbered, then
among the three candidates for label 8, B and C with successor
sequences (7,6,2, 1) are chosen over 4 which has the larger successor
sequence (7,6,5). This results in A getting the number 10 and hence,
being executed first. Basically, what the CG algorithm does is to give
tasks which either head long chains or have many successors larger
numbers and consequently it tends to place them earlier in the sched-
ule. Note that if we just use simple CP scheduling, executing tasks only
on the basis of the longest chain they head, there is no reason why B
and C couldn’t be executed first, resulting in the schedule shown
below.

f=6

The GJ algorithm (after Michael R. Garey and David S. Johnson of
Bell Laboratories (1975)).

Ronald L. Graham 203

In order to apply this algorithm we must put in all arrows implied by
the precedence constraints. (This is called forming the ‘‘transitive
closure” of the set of precedence constraints and like the transitive
reduction, can also be done for a set of n tasks in at most »n28! opera-
tions.) Suppose that we would like to try to finish all tasks by some
deadline d. The GJ algorithm computes a set of deadlines (which are
always = d) which would have to be met if in fact all tasks could be ex-
ecuted by time d. This is done by first assigning all tasks with no suc-
cessors a deadline of d. Thereafter, for any task T which has all its suc-
cessors assigned deadlines, we do the following: For each deadline d’
assigned to a successor of T, determine the number N, of successors
of T having modified deadline ¢’ or less. Set the deadline of T to be the
smallest value achieved by any of the quantities d' — [/, N,] (where
[x] denotes the smallest integer which is greater than or equal to x).
It is easy to see that if 7 has N, successors which all have deadlines
t which are < d’, then T must be finished by time d' — [/, N4] if all
deadlines are to be met. After all deadlines have been assigned, the GJ
schedule is formed by choosing the tasks in order of earliest deadlines
first. The theorem which Garey and Johnson prove is that if there is
any schedule which finishes by time d then this method will produce
one. It follows from this that a GJ schedule has the minimum possible
finishing time (and it doesn’t matter what d we started with in forming
it"). In the figure below we assign deadlines to the tasks using the
value d = 3.

| As is apparent, the earliest deadline (1) belongs to task 4, which as we
saw, must be executed first in any optimal schedule.
Finally, here is the optimal schedule produced by each of these three
algorithms:

204 Combinatorial Scheduling Theory

1415926535 5820974944 8979323846 5923078164 2643383279
8214808651 4811174502 3282306647 8410270193 0938446095
4428810975 4564856692 6659334461 3460348610 2847564823
7245870066 7892590360 0631558817 0113305305 4881520920
3305727036 0744623799 5759591953 6274956735 0921861173
9833673362 6094370277 4406566430 0539217176 8602139494
0005681271 1468440901 4526356082 2249534301 7785771342
4201995611 5187072113 2129021960 4999999837 8640344181
5024459455 7101000313 3469083026 7838752886 4252230825
5982534904 8903894223 2875546873 2858849455 1159562863
0628620899 5028841971 8628034825 6939937510 3421170679
8521105559 5058223172 6446229489 5359408128 5493038196
4543266482 3786783165 1339360726 2712019091 0249141273
4882046652 9628292540 1384146951 9171536436 9415116094
1885752724 8193261179 8912279381 3105118548 8301194912
2931767523 6395224737 8467481846 1907021798 7669405132
4654958537 7577896091 1050792279 7363717872 6892589235
2978049951 5981362977 0597317328 4771309960 1609631859
5875332083 3344685035 8142061717 2619311881 7669147303
9550031194 8823537875 6252505467 9375195778 4157424218

Figure 11. Can the 100 weights shown be packed into 10 bins of capaci-
ty 150,000,000,000? Even with the use of all the computing power in
the world currently available, there seems to be no hope of knowing the
answer to this question. This example, while not particularly realistic
(at present), illustrates the enormous difficulties in solving even rela-
tively small bin packing problems.

of algorithms have arisen in connection with this approach to bin packing
problems. We now turn to several of these.

To begin, let us arbitrarily arrange the weights of the items we are to pack
into a list L = (w,, w,,...); no confusion will arise by identifying an item
with its weight. One obvious way to pack the weights of L, called the first-fit
packing of L, is to pack the weights in the order in which they occurin L, fill-
ing each bin as much as possible before proceeding to subsequent bins. More
precisely, when it is w,’s turn to be packed, it is placed into the bin B; having
the least index i in which wy, can validly be packed, i.e., so that the new total
of the weights in B; still does not exceed W. (Of course, we assume at the
outset that no w; exceeds W since otherwise no packing at all is possible.)

We let FF(L) denote the number of bins required when the first-fit pack-
ing algorithm is applied to the list L and, similarly, we let OPT(L) denote
the number of bins required in an optimal packing of L. The natural question
of performance guarantee is this: How much larger than OPT(L) can FF(L)
ever be? The answer, due to Jeffrey Ullman of Princeton University, is quite
interesting. Ullman showed in 1973 that for any list of weights L,

<17

FF(L) = 10

OPT(L) + 2.

Ronald L. Graham 205

16 16 16 34 34 34 34
34 34 34 34 34 34 51
51 51 51 51 51 51 51

List of weights

16 16 i6
34 34 34
51 51 51
—— b 6 6y b 6 6 6
0 0 10 0 0 10 10
34 34 34 34 34 34 34
51 51 51 51 51 51 51

Optimal packing in 10 bins of size W = 101

=S| 22 120 722 274 12 022

16

- o 34 34 34 34 34
$ i 34 34 34 34 34
; 10
/ sy %c /50 50 Zso
0 020,
51 51 51 51 51

51 51 51

First-fit packing requires 17 bins of size W = 101.
Figure 12, The given weights can be packed, optimally, in 10 bins of ca-
pacity W = 101. But the first-fit algorithm—packing the weights in
order of their appearance on the list—requires 17 bins of this same size.
The ratio '7/,, is the worst that can ever happen with the first-fit
algorithm.

He also showed that the unexpected fraction '?/,, cannot be replaced by
any smaller number. In Figure 12 we give an example of a list L which has
FF(L)=17 and OPT({) =10, so that FF(L) =%/,,OPT(L). It is sus-
pected that, in fact, Ullman’s inequality always holds with the term 42 re-

206 Combinatorial Scheduling Theory

moved. However, it is not known if in this case equality can ever hold
when OPT(L) becomes very large.

The appearance of the rather mysterious value '7/,, turns out ultimately to
depend on properties of so-called “‘Egyptian” fractions, that is, fractions
which have numerator 1. Such fractions were treated extensively in one of
the earliest known mathematical manuscripts, the famous Rhind papyrus of
Aahmes (c. 1690 B.c.); at that time it was common to express fractional
quantities as sums of “Egyptian™ or unit fractions. For example, 25/,;, would
be written as (1/,) + (1/,) + (/).

The reason FF (L) was so large in the example given in Figure 12 was
because all the large weights were left until last to be packed. As in the
scheduling of independent tasks, it would make more sense to place large
weights near the beginning of the list and let the smaller weights be used at
the end for filling up gaps. More precisely, let us arrange the weights of L
into a new decreasing list in which larger weights always precede smaller
weights (exactly as in our earlier formation of CP schedules with no
precedence constraints) and then apply the first-fit packing algorithm to this
new list. This packing is called the first-fit decreasing packing of L; the
number of bins it requires we denote by FFD (L).

The behavior of first-fit decreasing packings turns out to be surprisingly
good. Corresponding to the 7/,, bound for FF(L), we have in this case the
following inequality: For any list of weights L,

FFD(L) < —19—1 OPT(L) + 4 -

Thus, for lists of weights requiring a large number of bins (where the +4
becomes relatively insignificant), the first-fit decreasing packing is guaran-
teed never to use more than approximately 22% more bins than does the the-
oretically optimal packing, compared to a 70% waste which could occur in a
first-fit packing which uses a particularly unlucky choice for its list. The
class of examples given in Figure 13 shows that the coefficient !/, cannot be
replaced by any smaller number.

The deceptively simple appearance of this bound for FFD (L) gives little
evidence of the substantial difficulties one encounters in trying to prove it.
The only proof known at present, due to David Johnson at Bell Labora-
tories, runs over 75 pages in length. In contrast to the situation for 7/,,, no
one currently understands the appearance of the fraction 1!/,.

One reason for the complex behavior of various bin packing algorithms is
the existence of certain counterintuitive anomalies. For example, suppose
the list of weights we are required to pack is

442 252 127 106 37 10 10
252 252 127 106 37 10 9
252 252 127 85 12 10 9
252 127 106 84 12 10
252 127 106 46 12 10

Ronald L. Graham 207

51 27 26 23 23
51 27 26 23 23
51 27 26 23 23
S1 27 26 23 23
51 27 26 23 23
51 27 26 23 23

List of weights

23 23 23 23 23 23
26 26 26 26 26 26
51 51 51 51 51 51

23 23 23

23 23 23

27 27 27

27 27 27

Optimal packing in bins of capacity W= 100

NS SN BN
27 27

27 27 27 27
s1 51 51 51 51 51
8 Y277 p777A
23 v -
sz z 23 23 23
2 2
23 23 Px)
26 26 23 23 23
26 26 23 23 23

First-fit decreasing algorithm requires 11 bins.

Figure 13. First-fit packing of the listed weights arranged in decreasing
order requires 11 bins of capacity W = 100 instead of the optimal 9. By
repeating each weight n times, we can create as large an example as
desired which has this '/, ratio.

and suppose the bin capacity W is 524. In Figure 14 we show a first-fit
decreasing packing of L; seven bins are required. However, if the weight 47
is removed from the list, a first-fit decreasing packing of the diminished list
L' now requires eight bins (see Figure 14). Not surprisingly, this kind of be-
havior can cause serious difficulties in a straightforward approach to bin
packing problems.

208 Combinatorial Scheduling Theory

442 252 127 106 37 10 10

252 252 127 106 37 10 9

252 252 127 8 12 10 9

252 127 106 84 12 10

252 127 106 46 12 10
List of weights

12 10 10
46
252 252
442
252 252
=10 9 37 37
127 106 84
252
127 127 8
106
127
106
252 252
127 106
FFD(L)=7
rzrzzrr3 8 zrrra 8 Iz 7 8 rrrrrzra &
37 12 12 12
37
252 252 252
442
252 252 252
zr7rrrrZ ?0 rzrrrrrr] prrrrrrry 7
=10 =10
127
106 84
127 127 8s 515
106
252 127 106
127 106 A s

FFD (L |) =8 Where L | =L —{47}.

Figure 14. Decreasing first-fit packing of the listed weights requires 7
bins of size 524, but if one weight is removed from this list, then this
same algorithm requires 8 bins!

Pattern Arrangements

One natural extension of the bin packing problem just discussed is the so-
called two-dimensional bin packing problem. In this we are given a list of
plane regions of different sizes and shapes which we are to pack without
overlapping into as few as possible “standard” regions. Common examples

Ronaid L. Graham 209

o
®
]
L
L
1.
]
L
=
B
]
B
L
-]
]
]
B
L
]
e
]
%R
»
]
3]
o
]

Figure 15. The obvious packing of (100,000)? unit squares into a large
square whose side is 100,000.1 leaves slightly over 20,000 square units
uncovered. But no unit square can fit in the uncovered region.

are the placement of sewing patterns onto pieces of material, or the arrange-
ment of patterns for shoe components on irregular pieces of leather. It might
be thought that the main source of difficulty here is due primarily to the ir-
regularities in the shapes of the pieces involved. However, even for pieces
with very regular shapes, it is usually far from obvious what the best pack-
ings are. Indeed, such questions will probably never be completely an-
swered.

As an example, let us consider the following simple geometrical packing
problem: How many nonoverlapping unit squares can be placed inside a
large square of side s? Of course, if s is equal to some integer N then it is
easy to see that the right answer is N2, But what if s is not an integer, e.g.,
s = N + '/,,. What should we do in this case? Certainly one option is to fill in
an N by N subsquare with N2 unit squares in the obvious way (see Figure
15)and surrender the uncovered area (nearly s/5 square units) as unavoidable
waste. But is this really the best which can be done? Quite surprisingly the
answer is no. It has been shown very recently by Paul Erdés of the Hungari-
an Academy of Science, Hugh Montgomery of the University of Michigan,
and the author, that as s becomes large, there actually exist packings for any
s by s square which leave an uncovered area of at most s(3-V3)2= ¢0.634...
square units; this is significantly less than the s/5 units of uncovered area left
by the obvious packing when s becomes very large. For example, when
s = 100,000.1 the conventional packing (as in Figure 15) fits in
100,000% = 10 unit squares, leaving slightly over 20,000 (= 100,000/5)
square units uncovered. However, since 100,000.01%63¢ = 1479.11, it is
possible by clever packing to fit in more than 6000 extra squares (see Fig-
ure 16). The figure s%%3 is probably not the best possible ultimate bound
for large values of s; it seems to be extremely difficult to decide what the

210 Combinatorial Scheduling Theory

Figure 16. By placing the squares into a different arrangement, it is pos-
sible to fit more than (100,000)% + 6000 unit squares into a large square
whose side is 100,000.1. The area left uncovered in the new arrange-
ment is less than in the standard arrangement. (The illustration only
suggests how this rearrangement may be done. The actual pattern can-
not be drawn with as few squares as appear above.)

correct order of growth for the unavoidably uncovered area really is, al-
though Vs = 5°5 looks like a likely candidate.

The particular scheduling model we have examined in this article, while
quite simple and basic, still possesses enough structure to exhibit the
unpredictable behavior so typical of more complex (and more realistic) situ-
ations. What happens is that processors start relatively unimportant tasks
(since unnecessary idleness is not permitted) and having started, cannot stop
until these tasks are completed, thereby delaying tasks which had since
become more urgent. The fact that such behavior is not uncommon in real
world scheduling situations testifies to the reasonableness of the model’s as-
sumptions.

The problem of deciding the proper order in which the tasks should be
chosen so as to minimize the overall finishing time is extremely difficult. In
most cases of realistic complexity, we must be satisfied with obtaining solu-
tions which (we hope) are reasonably close to the optimum. Fortunately, it is
often possible to find efficient procedures for closely approximating optimal
solutions; this is frequently the most useful approach for tackling scheduling
problems; in fact, for NP-complete problems it is the only general method
that offers any hope at present.

Naturally, many extensions of our basic model are possible. They can
include, for example, interruption of tasks before completion, introduction
of various resource requirements for the tasks, random arrival of tasks,
nonidentical processors and different performance measures, to name a few.
By subjecting these extended models to the type of analysis we have
described, researchers today are rapidly gaining insight into the very dif-
ficult problems of scheduling.

Ronald L. Graham 211

Suggestions for Further Reading

General

Graham, Ronald L. and Garey, Michael R. The limits to computation. 1978 Year-
book of Science and the Future. Encyclopaedia Britannica, 1977, pp. 170-185.

Knuth, Donald E. Mathematics and computer science: coping with finiteness. Sci-
ence 194 (December 17, 1976) 1235—-1242.

Kolata, Gina Bari. Analysis of algorithms: coping with hard problems. Science 186
(1974) 520-521.

Steen, Lynn Arthur. Computational unsolvability. Science News, 109 (1976)
298-301.

Technical

Garey, Michael R., Graham, Ronald L., and Johnson, D.S. Performance guaran-
tees for scheduling algorithms. Operations Research 26(1978) 3~-21.

Garey, Michael R. and Johnson, David S. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, San Francisco, 1978.

Graham, Ronald L. Bounds on the performance of scheduling algorithms. In Coff-
man, E. G., Computer and Jobshop Scheduling Theory. Wiley, New York,
1976.

