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Introduction

One of the basic starting points for one-dimension
combinatorial dynamics is Sharkovsky’s Theorem.

Theorem

Let f : R ! R be continuous. If f has a periodic point of least
period v then f also has a periodic point of least period m for
any m / v, where

1 / 2 / 4 / . . . . . . 28 / 20 / 12 / . . . 14 / 10 / 6 . . . 7 / 5 / 3.
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a basic result

Theorem

Let M be the Markov matrix associated to a directed graph
that has vertices labeled E1, . . . , En, then the ijth entry of Mk

gives the number of walks of length k from Ej to Ei .

Corollary

The trace of Mk gives the total number of closed walks of
length k.
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a basic result

Theorem

Let M be the Markov matrix associated to a directed graph
that has vertices labeled E1, . . . , En, then the ijth entry of Mk

gives the number of walks of length k from Ej to Ei .

Corollary

The trace of Mk gives the total number of closed walks of
length k.
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an example – with orientation
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an example – with orientation
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basic properties

Theorem

The ijth entry of (M1(✓))
k gives the number of positively

oriented walks of length k from Ej to Ei minus the number
negatively oriented walks from Ej to Ei .

Corollary

The trace of (M1(✓))
k gives the number of positively oriented

closed walks of length k minus the number of negatively
oriented closed walks of length k.
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basic properties

Theorem
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Corollary

The trace of (M1(✓))
k gives the number of positively oriented

closed walks of length k minus the number of negatively
oriented closed walks of length k.
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basic properties

Theorem

Trace (M0(✓))�Trace (M1(✓)) = 1.

Periods of
periodic orbits

for vertex
maps on
graphs

Introduction

an example

an example –
with
orientation

basic
properties

two lemmas

vertex maps
on graphs

basic
properties

two lemmas –
redux

Sharkovsky
ordering

Final remarks

first lemma

Lemma

Let f : R ! R be continuous. Suppose that f has a periodic
point of period 17. Then f has a periodic point of period 2k

for any non-negative integer k.
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first lemma

Proof.

Since 17 is not a divisor of 2k we know that ✓2k
does not fix

any of the integers in {1, 2, . . . , 17}. So Trace (M0(✓
2k

)) = 0.

So Trace (M1(✓
2k

)) = �1. So the oriented Markov graph has a
vertex Ej with a closed walk from Ej to itself of length 2k with
negative orientation. Since the orientation is negative it cannot
be the repetition of a shorter closed walk, as any shorter closed
walk would have to be repeated an even number of times. So
there is a periodic point in Ej with minimum period 2k .
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first lemma

Proof.

Since 17 is not a divisor of 2k we know that ✓2k
does not fix

any of the integers in {1, 2, . . . , 17}. So Trace (M0(✓
2k

)) = 0.

So Trace (M1(✓
2k

)) = �1.

So the oriented Markov graph has a
vertex Ej with a closed walk from Ej to itself of length 2k with
negative orientation. Since the orientation is negative it cannot
be the repetition of a shorter closed walk, as any shorter closed
walk would have to be repeated an even number of times. So
there is a periodic point in Ej with minimum period 2k .
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first lemma

Proof.

Since 17 is not a divisor of 2k we know that ✓2k
does not fix

any of the integers in {1, 2, . . . , 17}. So Trace (M0(✓
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)) = 0.

So Trace (M1(✓
2k

)) = �1. So the oriented Markov graph has a
vertex Ej with a closed walk from Ej to itself of length 2k with
negative orientation.

Since the orientation is negative it cannot
be the repetition of a shorter closed walk, as any shorter closed
walk would have to be repeated an even number of times. So
there is a periodic point in Ej with minimum period 2k .
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Proof.
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does not fix

any of the integers in {1, 2, . . . , 17}. So Trace (M0(✓
2k

)) = 0.

So Trace (M1(✓
2k

)) = �1. So the oriented Markov graph has a
vertex Ej with a closed walk from Ej to itself of length 2k with
negative orientation. Since the orientation is negative it cannot
be the repetition of a shorter closed walk, as any shorter closed
walk would have to be repeated an even number of times.

So
there is a periodic point in Ej with minimum period 2k .
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does not fix
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)) = 0.

So Trace (M1(✓
2k

)) = �1. So the oriented Markov graph has a
vertex Ej with a closed walk from Ej to itself of length 2k with
negative orientation. Since the orientation is negative it cannot
be the repetition of a shorter closed walk, as any shorter closed
walk would have to be repeated an even number of times. So
there is a periodic point in Ej with minimum period 2k .
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second lemma

Lemma

Let f : R ! R be continuous. Suppose that f has a periodic
point of period 17. Then f has a periodic point of period m for
any non-negative integer m > 17.
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second lemma

Proof.

Trace (M1(✓)) = �1. So there vertex Ej in the Markov graph
with a closed walk of length one with negative orientation.

M1(✓)
17 is the identity matrix. So there is a closed walk from

Ej to itself with length 17 and with positive orientation. The
closed walk of length 17 is not a repetition of the walk of
length 1. We can construct a non-repetitive closed walk of
length m by going once around the walk of length 17 and then
m � 17 times around the walk of length 1.
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second lemma

Proof.

Trace (M1(✓)) = �1. So there vertex Ej in the Markov graph
with a closed walk of length one with negative orientation.
M1(✓)

17 is the identity matrix. So there is a closed walk from
Ej to itself with length 17 and with positive orientation.

The
closed walk of length 17 is not a repetition of the walk of
length 1. We can construct a non-repetitive closed walk of
length m by going once around the walk of length 17 and then
m � 17 times around the walk of length 1.
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second lemma

Proof.

Trace (M1(✓)) = �1. So there vertex Ej in the Markov graph
with a closed walk of length one with negative orientation.
M1(✓)

17 is the identity matrix. So there is a closed walk from
Ej to itself with length 17 and with positive orientation. The
closed walk of length 17 is not a repetition of the walk of
length 1.

We can construct a non-repetitive closed walk of
length m by going once around the walk of length 17 and then
m � 17 times around the walk of length 1.
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second lemma

Proof.

Trace (M1(✓)) = �1. So there vertex Ej in the Markov graph
with a closed walk of length one with negative orientation.
M1(✓)

17 is the identity matrix. So there is a closed walk from
Ej to itself with length 17 and with positive orientation. The
closed walk of length 17 is not a repetition of the walk of
length 1. We can construct a non-repetitive closed walk of
length m by going once around the walk of length 17 and then
m � 17 times around the walk of length 1.
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basic properties

Theorem

1 (M0(✓))
k = M0(✓

k)

2 (M1(✓))
k = M1(✓

k)

3 Trace (M0(✓))�Trace (M1(✓)) = Lf

Corollary

If the underlying map is homotopic to the identity, then
Trace (M0(✓))�Trace (M1(✓)) = v � e
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first lemma – redux

Lemma

Let G be a graph and f a vertex map from G to itself that is
homotopic to the identity. Suppose that the vertices form one
periodic orbit. Suppose f flips an edge. If v is not a divisor of
2k , then f has a periodic point with period 2k .
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first lemma – redux

Proof.

Since f flips an edge, there must be at least one loop in the
Markov graph that has length 1 and has negative orientation.

Since Trace(M1(f )) = e � v , there must be at least e � v + 1
loops in Markov graph of length 1 that have positive
orientation. By going around each of these loops in the Markov
graph twice we can see that there must be at least e � v + 2
loops of length 2 that have positive orientation.
Since Trace(M1(f )2) = e � v , there must be at least one loop
of length 2 with negative orientation. Since it has negative
orientation, it cannot be the repetition of a shorter loop. So
the Markov graph of f has a non-repetitive loop of length 2
with negative orientation.
etc – use induction
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Proof.

Since f flips an edge, there must be at least one loop in the
Markov graph that has length 1 and has negative orientation.
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loops in Markov graph of length 1 that have positive
orientation.

By going around each of these loops in the Markov
graph twice we can see that there must be at least e � v + 2
loops of length 2 that have positive orientation.
Since Trace(M1(f )2) = e � v , there must be at least one loop
of length 2 with negative orientation. Since it has negative
orientation, it cannot be the repetition of a shorter loop. So
the Markov graph of f has a non-repetitive loop of length 2
with negative orientation.
etc – use induction
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Since f flips an edge, there must be at least one loop in the
Markov graph that has length 1 and has negative orientation.
Since Trace(M1(f )) = e � v , there must be at least e � v + 1
loops in Markov graph of length 1 that have positive
orientation. By going around each of these loops in the Markov
graph twice we can see that there must be at least e � v + 2
loops of length 2 that have positive orientation.

Since Trace(M1(f )2) = e � v , there must be at least one loop
of length 2 with negative orientation. Since it has negative
orientation, it cannot be the repetition of a shorter loop. So
the Markov graph of f has a non-repetitive loop of length 2
with negative orientation.
etc – use induction
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Proof.

Since f flips an edge, there must be at least one loop in the
Markov graph that has length 1 and has negative orientation.
Since Trace(M1(f )) = e � v , there must be at least e � v + 1
loops in Markov graph of length 1 that have positive
orientation. By going around each of these loops in the Markov
graph twice we can see that there must be at least e � v + 2
loops of length 2 that have positive orientation.
Since Trace(M1(f )2) = e � v , there must be at least one loop
of length 2 with negative orientation. Since it has negative
orientation, it cannot be the repetition of a shorter loop.

So
the Markov graph of f has a non-repetitive loop of length 2
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first lemma – redux

Proof.

Since f flips an edge, there must be at least one loop in the
Markov graph that has length 1 and has negative orientation.
Since Trace(M1(f )) = e � v , there must be at least e � v + 1
loops in Markov graph of length 1 that have positive
orientation. By going around each of these loops in the Markov
graph twice we can see that there must be at least e � v + 2
loops of length 2 that have positive orientation.
Since Trace(M1(f )2) = e � v , there must be at least one loop
of length 2 with negative orientation. Since it has negative
orientation, it cannot be the repetition of a shorter loop. So
the Markov graph of f has a non-repetitive loop of length 2
with negative orientation.

etc – use induction
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first lemma – redux

Proof.

Since f flips an edge, there must be at least one loop in the
Markov graph that has length 1 and has negative orientation.
Since Trace(M1(f )) = e � v , there must be at least e � v + 1
loops in Markov graph of length 1 that have positive
orientation. By going around each of these loops in the Markov
graph twice we can see that there must be at least e � v + 2
loops of length 2 that have positive orientation.
Since Trace(M1(f )2) = e � v , there must be at least one loop
of length 2 with negative orientation. Since it has negative
orientation, it cannot be the repetition of a shorter loop. So
the Markov graph of f has a non-repetitive loop of length 2
with negative orientation.
etc – use induction
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second lemma – redux

Lemma

Let G be a graph and f a map from G to itself that is
homotopic to the identity. Suppose that the vertices form one
periodic orbit. Suppose f flips an edge. If v = 2pq, where
q > 1 is odd and p � 0, then f has a periodic point with
period 2pr for any r � q.

Proof.

Similar trace argument.
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Lemma

Let G be a graph and f a map from G to itself that is
homotopic to the identity. Suppose that the vertices form one
periodic orbit. Suppose f flips an edge. If v = 2pq, where
q > 1 is odd and p � 0, then f has a periodic point with
period 2pr for any r � q.

Proof.

Similar trace argument.
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Sharkovsky ordering

The Sharkovsky ordering can be defined as follows:
(what positive integers does v force?)

1 2l / 2k = v if l  k .

2 If v = 2ks, where s > 1 is odd, then
1 2l / v , for all positive integers l .
2 2k r / v , where r � s.
3 2l r / v , where l > k and such that 2l r < v .
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final remarks

1 This is a way of generalizing from maps of the interval and
circle to maps on graphs.

2 This is not the most general method of generalizing, but it
leads to interesting results, and is very accessible.

3 More info at: Sharkovsky’s theorem and one-dimensional
combinatorial dynamics arxiv.org/abs/1201.3583

Thank you!
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