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Outline

The escaping set.

Rates of escape and tracts.

Slow escape within a logarithmic tract.

Slow escape in more general tracts.

James Waterman (The Open University) Iteration in tracts March 28, 2019 2 / 16



The escaping set

Definition

Let f : C→ C be a transcendental entire function, then the escaping set
I(f) is

I(f) = {z : fn(z)→∞ as n→∞}.

Eremenko (1989) showed I(f) has the following properties:

J(f) = ∂I(f)
I(f) ∩ J(f) 6= ∅,
I(f) has no bounded components.

Eremenko’s conjecture: All components of I(f) are unbounded.
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Fast escape

First introduced by Bergweiler and Hinkkanen (1999)

Definition

The fast escaping set,

A(f) = {z : there exists L ∈ N such that |fn+L(z)| ≥Mn(R) for n ∈ N}

where
M(R) = max

|z|=R
|f(z)| for R > 0.

∂A(f) = J(f)
A(f) ∩ J(f) 6= ∅
All components of A(f) are unbounded by a result of Rippon and
Stallard (2005).
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Slow escape

There exist points that escape arbitrarily slowly.

Theorem (Rippon, Stallard, 2011)

Let f be a transcendental entire function. Then, given any positive
sequence (an) such that an →∞ as n→∞, there exist

ζ ∈ I(f) ∩ J(f) and N ∈ N

such that
|fn(ζ)| ≤ an, for n ≥ N.

A(f) is always different from I(f).
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Tracts

Definition

Let D be an unbounded domain in C whose boundary consists of
piecewise smooth curves. Further suppose that the complement of D is
unbounded and let f be a complex valued function whose domain of
definition includes the closure D̄ of D.
Then, D is a direct tract if f is analytic in D, continuous on D̄, and if
there exists R > 0 such that |f(z)| = R for z ∈ ∂D while |f(z)| > R for
z ∈ D. If in addition the restriction f : D → {z ∈ C : |z| > R} is a
universal covering, then D is a logarithmic tract.

Every transcendental entire function has a direct tract.
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Examples

exp(z) exp(exp(z)− z)
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More examples

exp(sin(z)− z) exp(exp(z))− exp(z)
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Logarithmic transform and the expansion estimate

Let D be a logarithmic tract, f holomorphic in D, and suppose that
f(D) = C \ D with f(0) ∈ D. We consider the logarithmic transform of f
defined by the following commutative diagram,

logD H

z w

F

exp exp

f

where exp(F (t)) = f(exp(t)) for t ∈ logD and H = {z : Re(z) > 0}.

Lemma (Eremenko, Lyubich 1992)

For z ∈ D as above, we have∣∣∣∣zf ′(z)f(z)

∣∣∣∣ ≥ 1

4π
log |f(z)| .
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Slow escape in logarithmic tracts

Lemma

For a logarithmic tract D and r sufficiently large so that MD(r) > e16π2
,

f(A(r, 2r) ∩D) ⊃ Ā(e16π2
,MD(r)).

Theorem

Let f be a transcendental entire function with a logarithmic tract D.
Then, given any positive sequence (an) such that an →∞ as n→∞,
there exist

ζ ∈ I(f) ∩ J(f) ∩D and N ∈ N

such that
fn(ζ) ∈ D, for n ≥ 1,

and
|fn(ζ)| ≤ an, for n ≥ N.
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Two-sided slow escape in logarithmic tracts

Theorem

Let f be a transcendental entire function with a logarithmic tract D.
Then, given any positive sequence (an) such that an →∞ as n→∞ and
an+1 = O(MD(an)) as n→∞, for any C > 1, there exist

ζ ∈ J(f) ∩D, and N ∈ N,

such that
fn(ζ) ∈ D, for n ≥ 1,

and
an ≤ |fn(ζ)| ≤ Can, for n ≥ N.
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Hyperbolic distance

Definition

Let D be the unit disc. The hyperbolic distance on D is

ρD(z1, z2) = inf
γ

∫ z2

z1

|dz|
1− |z|2

where this infimum is taken over all smooth curves γ joining z1 to z2 in D.
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Annulus covering using hyperbolic contraction

Lemma

Let Σ be a hyperbolic Riemann surface. For a given K > 1, if
f : Σ→ C \ {0} is analytic, then for all z1, z2 ∈ Σ such that

ρΣ(z1, z2) <
1

2
log

(
1 +

logK

10π

)
and |f(z2)| ≥ K|f(z1)|

we have
f(Σ) ⊃ Ā(|f(z1)|, |f(z2)|).

James Waterman (The Open University) Iteration in tracts March 28, 2019 13 / 16



Slow escape in ‘nice’ direct tracts

Theorem

Let f be a transcendental entire function and let D be a direct tract of f ,
bounded by ‘nice’ curves. Then, given any positive sequence (an) such
that an →∞ as n→∞, there exist

ζ ∈ I(f) ∩ J(f) ∩D and N ∈ N

such that
fn(ζ) ∈ D, for n ≥ 1,

and
|fn(ζ)| ≤ an, for n ≥ N.
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Example of slow escape in a non-logarithmic tract

exp

(
−

∞∑
k=1

( z

2k

)2k
)
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Thank you for your attention!Thank you for your attention!
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