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Introduction

Introduction

Consider
x̄ = fµ(x , θ),
θ̄ = θ + ω,

}
where x ∈ Rn, θ ∈ T1, µ ∈ R is a parameter, ω ∈ (0, 2π) \ 2πQ and fµ is
smooth enough.
Assume that, for a given µ0, there is an attracting invariant curve, xµ0(θ)
with rotation number ω,

fµ0(xµ0(θ), θ) = xµ0(θ + ω), ∀ θ ∈ T1.

We are interested in the continuation of xµ0 w.r.t. the parameter µ.
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Introduction

Example: the quasiperiodically forced logistic map

.
x̄ = α(1 + ε cos(θ))x(1− x),
θ̄ = θ + ω,

}
with ω = π(

√
5− 1) and ε = 0.5.
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Left: α = 2.65, Λ ≈ −0.03884. Right: α = 2.665, Λ ≈ −0.00845.
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Introduction

In this talk we will focus on this fractalization process.

Note that to study this process by means of direct numerical simulation is
a very difficult problem (see, for instance, the previous examples).

We will introduce the problem by discussing first the 1D case (x ∈ R) and
then we will focus on some aspects of the complex case (x ∈ C).
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Introduction Linear behaviour

Linear behaviour

As f0(u0(θ) + h, θ) = f0(u0(θ), θ) + Dx f0(u0(θ), θ)h + · · · , the linearized
dynamics around u0(θ) is given by

x̄ = a(θ)x ,
θ̄ = θ + ω,

}
(1)

where a(θ) = Dx f0(u0(θ), θ).
In what follows, we will assume that a(θ) 6≡ 0.

Definition

(1) is called reducible iff there exists a (at least continuous) linear change
of variables x = c(θ)y such that (1) becomes

ȳ = by ,
θ̄ = θ + ω,

}
where b does not depend on θ.
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Introduction Linear behaviour

Proposition

Assume that ω satisfies a Diophantine condition,

|qω − 2πp| ≥ γ

|q|τ
, for all (p, q) ∈ Z× (Z \ {0}),

and that a is C∞. Then, (1) is reducible iff a has no zeros.

This result also holds if a ∈ C r , for r big enough but, due to the effect of
the small divisors, the reducing transformation does not need to be C r .
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Introduction Linear behaviour

The Lyapunov exponent of (1) at θ is

λ(θ) = lim sup
n→∞

1

n
ln

∣∣∣∣∣∣
n−1∏
j=0

a(θ + jω)

∣∣∣∣∣∣ .
We define

Λ =
1

2π

∫ 2π

0
ln |a(θ)| dθ.

If Λ is finite, then the Birkhoff ergodic theorem implies that

λ(θ) = Λ, for Lebesgue-a.e. θ ∈ T1.

The value Λ is usually known as the Lyapunov exponent of the skew
product.

Proposition

If a(θ) is C 0 and the skew product is reducible, then the Lyapunov
exponent at θ, λ(θ), does not depend on θ.
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Introduction Linear behaviour

Let us consider
x̄ = a(θ, µ)x ,
θ̄ = θ + ω,

}
where a is a C∞ function of θ and µ. We assume that a(·, µ) has a zero of
multiplicity 2 for µ = µ0 at θ = θ0,

∂a

∂µ
(θ0, µ0) 6= 0.

and that the number of zeros of a(·, µ) increases from µ < µ0 to µ > µ0.
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Introduction Linear behaviour

Theorem

Then, the Lyapunov exponent Λ(µ) is a C 0 function of µ such that:

1 Λ is C∞ when µ 6= µ0.

2

lim
µ→µ−0

Λ′(µ) = −∞, and lim
µ→µ+0

Λ′(µ) exists and is finite.

Moreover, for µ→ µ−0 we have the asymptotic expression

Λ(µ) = Λ(µ0) + A
√
|µ− µ0|+ O(|µ− µ0|),

where A > 0.
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Introduction Affine systems

Affine systems

x̄ = α a(θ)x + b(θ),
θ̄ = θ + ω,

}
(2)

where a and b are C r functions and α is a real positive parameter.
It is clear that, for any invariant curve of (2), its linearized normal
behaviour is described by

x̄ = α a(θ)x ,
θ̄ = θ + ω.

}
(3)

In what follows, we will assume that (3) is not reducible.
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Introduction Affine systems

The Lyapunov exponent is given by

Λ = lnα +
1

2π

∫ 2π

0
ln |a(θ)| dθ.

If the integral above exists (and it is finite), then the Lyapunov exponent is
negative for sufficiently small values of α, namely,

α < α0 = exp

(
− 1

2π

∫ 2π

0
ln |a(θ)| dθ

)
.

In particular this implies that, for α < α0, any invariant curve of

x̄ = α a(θ)x + b(θ),
θ̄ = θ + ω,

}
is attracting and, therefore, it must be unique.
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Introduction Affine systems

Fractalization

As we are dealing with an affine system and the sup norm of a curve does
not need to be bounded, we will say that a curve is fractalizing when its
C 1 norm –taken on any closed nontrivial interval for θ– goes to infinity
much faster than its C 0 norm, that is, when

lim sup
α→α0

‖x ′α‖I ,∞
‖xα‖∞

= +∞,

where ‖ · ‖I ,∞ denotes the sup norm on a nontrivial closed interval I .
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Introduction Affine systems

Theorem

Assume that a, b ∈ C 1(T,R) and that (3) is not reducible. Then,

a) If lim sup
α→α−

0

‖xα‖∞ < +∞,

and b ∈ D1 (D1 is a suitable residual set), we have

lim sup
α→α−

0

‖x ′α‖I ,∞ = +∞,

for any nontrivial closed interval I ⊂ T.

b) If lim sup
α→α−

0

‖xα‖∞ = +∞,

then, for any nontrivial closed interval I ⊂ T, we have

lim sup
α→α−

0

‖xα‖I ,∞ = +∞, and lim sup
α→α−

0

‖x ′α‖I ,∞
‖xα‖∞

= +∞.
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Introduction Affine systems

If a is a positive function with at least a zero (so that the skew product is
not reducible), we have a better result.

Proposition

Assume, in (2), that a, b ∈ C 1(T,R), a(θ) ≥ 0 for all θ ∈ T1 and there
exists a value θ0 such that a(θ0) = 0. We also assume that b never
vanishes. Then,

a) If a, b ∈ C r (T,R), r ≥ 1, then xα ∈ C r (T,R) for 0 < α < α0.

b) For any nontrivial closed interval I ⊂ T, we have

lim
α→α−

0

‖xα‖I ,∞ = +∞, and lim
α→α−

0

‖x ′α‖I ,∞
‖xα‖∞

= +∞.

c) For α > α0, there is no x ∈ C 0(T,R) such that
x(θ + ω) = αa(θ)x(θ) + b(θ).
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Introduction Affine systems

Some numerical examples

x̄ = α (1 + cos θ)x + 1,
θ̄ = θ + ω,

}
where ω is the golden mean. We note that 1 + cos θ ≥ 0 so we are in the
hypotheses of the last proposition.

The Lyapunov exponent of the linear skew product is Λ = lnα− ln 2 and,
therefore, the critical value α0 is 2.

Then, there exists a unique invariant attracting curve for 0 < α < 2, that
undergoes a fractalization process when α→ 2−.
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Introduction Affine systems
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Introduction Affine systems

Another example.

x̄ = α cos(θ) x + 1,
θ̄ = θ + ω,

}
being α a positive parameter.
It is easy to see that its Lyapunov exponent is lnα− ln 2.
If α < 2, the Lyapunov exponent is negative. Therefore, we must have a
unique and global attracting set.
Next slides show the attractor for several values α < 2.
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Introduction Affine systems
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Introduction Affine systems
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Affine skew products of the plane

Affine skew products of the plane
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Affine skew products of the plane

Some skew products of the plane

We have shown that, in some situations, the lack of reducibility implies the
existence of “weird” behaviours.

Here we will look at fractalization processes in (a bit) higher dimensions.

Let us start considering the following situation:(
x̄
ȳ

)
= µ

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
c
0

)
,

θ̄ = θ + ω,

where c and µ are real parameters.
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Affine skew products of the plane

It is easy to prove that

1 if |µ| < 1 the map has an attracting invariant curve,

2 if |µ| > 1 the map has a repelling curve,

3 if |µ| = 1 the map has no invariant curve.

Let us show the behaviour of this system by means of a numerical
experiment.

In what follows, let us fix c = 1.
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Affine skew products of the plane

Figure: Attracting curve for µ = 0.5, µ = 0.9, µ = 0.99 and µ = 0.999
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Affine skew products of the plane

 1

 10

 100

 1000

 0.0001  0.001  0.01  0.1  1

 1

 10

 100

 1000

 10000

 100000

 0.001  0.01  0.1  1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.0001  0.001  0.01  0.1  1

 0.1

 1

 10

 100

 1000

 10000

 0.0001  0.001  0.01  0.1  1

Figure: Computations with c = 1. Top: On the left, fitting between ‖zµ‖∞ and
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Affine skew products of the plane

Note that the linear dynamics along these curves is given by(
x̄
ȳ

)
= µ

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
,

θ̄ = θ + ω

and that this linear system is not reducible.

Let us use complex notation: if z = x + y i , the previous map can be
written as

z̃ = µeθi z + c ,

θ̃ = θ + ω.
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Affine skew products of the plane

So, let us start focusing on linear invertible maps of the form

Fa(θ) : T× C −→ T× C
(θ, z) 7−→ (θ + ω, a(θ)z),

where, for all θ ∈ T, the value a(θ) ∈ C is different from zero.

Definition

A number ω is called Diophantine of type (γ, τ) for γ > 0 and τ ≥ 2, if∣∣∣∣ω − p

q

∣∣∣∣ > γ

|q|τ

for all p
q ∈ Q. We denote by Dγ,τ the set of Diophantine numbers.
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Affine skew products of the plane

Moreover, we assume than the map θ 7→ a(θ) is of class C r (r ≥ 1) and
that ω ∈ Dγ,τ . We are interested in classifying these linear skew-products

Let us denote by wind(a(θ), 0) the winding number of the closed curve
a(θ) with respect to the point z = 0.
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Affine skew products of the plane

Definition (Topological and linear conjugacy as skew products)

Two linear skew-products Fa and Fb are topologically conjugate as skew
products if there exists a change of coordinates of the form

H(θ, z) = (θ + ν,H(θ, z))

where ν ∈ T and, for each θ, H(θ, ·) is a homeomorphism of the plane
verifying H(θ, 0) = 0 and such that

H−1 ◦ Fa ◦ H = Fb.

When H(θ, z) can be chosen to be linear w.r.t. z , i.e. H(θ, z) = c(θ)z ,
with c(θ) continuous and different from zero for all θ, then Fa and Fb are
said to be linearly conjugate as skew products up to an angle translation.
If ν = 0 we say that Fa and Fb are linearly conjugate as skew products.
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Affine skew products of the plane

Definition

A topological conjugacy as above is isotopic to the identity if H(θ, ·) is
isotopic to the identity for each θ ∈ T.

Note that linear conjugacies are always isotopic to the identity.

Definition (Reducibility)

A linear skew product
θ 7→ θ + ω,
z 7→ a(θ)z ,

}
is said to be reducible iff there exists a linear change of variables,
(θ, z) = (θ, e(θ)u) such that the transformed system becomes

θ 7→ θ + ω,
u 7→ bu,

}
where b = e(θ + ω)−1a(θ)e(θ) does not depend on θ.
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Affine skew products of the plane Linear conjugacy classes

Proposition

Let ω ∈ Dγ,τ . Then there exists r = r(τ) such that if a(θ) and b(θ) are of
class C r then the following equivalence holds: Fa(θ) and Fb(θ) are linearly
conjugated if and only if the following two conditions are satisfied:

(a) wind(a(θ), 0) = wind(b(θ), 0).

(b) There exists m ∈ Z and a branch of the logarithm such that∫
T

log

(
e−imω

a(θ)

b(θ)

)
dθ = 0.

Moreover, if such m exists, it is unique and the linear change of
coordinates Hθ(z) = c(θ)z satisfies that wind(c(θ), 0) = m.
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Affine skew products of the plane Linear conjugacy classes

Proposition (Normal form)

Assume ω ∈ Dγ,τ , a(θ) is C r(τ) and wind(a(θ), 0) = n. Then, for any
m ∈ Z, there exists a linear change, of winding number −m, which
conjugates Fa(θ) to

Fb(m,θ)(θ, z) = (θ + ω, be imωe inθz)

where b = |b|e iρ ∈ C satisfies

|b| = exp

(
1

2π

∫
T

log |a(θ)| dθ
)
, ρ =

1

2π
Im

∫
T

log(a(θ)e−inθ) dθ,

for any determination of the logarithm. Moreover, two such systems
(θ + ω, b1e inθz) and (θ + ω, b2e inθz), with b1, b2 ∈ C are linearly
conjugate if and only if b1 = b2e imω for some m ∈ Z.
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Affine skew products of the plane Linear conjugacy classes

Corollary

Assume ω ∈ Dγ,τ , a(θ) is C r(τ). If wind(a(θ), 0) = 0, then the system is
reducible. Moreover, the system is reducible to a system of the form
(θ + ω, bz) with b ∈ R, if and only if there exists m ∈ Z and a branch of
the argument such that ∫

T
arg(a(θ))dθ −mω = 0.

In such case, the change has winding number equal to −m.
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Affine skew products of the plane Linear conjugacy classes

Corollary

Assume ω ∈ Dγ,τ , a(θ) is C r (τ) and wind(a(θ), 0) = n 6= 0. Then, there
exists a unique b ∈ R such that Fa(θ) is linearly conjugate to

Fb(θ, z) = (θ + ω, be inθz).

As before, the precise value of b is

b = exp

(
1

2π

∫
T

log |a(θ)| dθ
)
.
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Affine skew products of the plane Topological conjugacy classes

Topological conjugacy classes

We recall that if two linear skew products Fa(θ) and Fb(θ) are topologically
conjugate then there exists a constant ν ∈ T and a homeomorphism
H : T× C→ C such that

H(θ + ω, a(θ)z) = b(θ + ν)H(θ, z), ∀θ ∈ T, ∀z ∈ C.

Proposition

If two linear skew products Fa(θ) and Fb(θ) are topologically conjugate then
wind(a(θ), 0) = wind(b(θ), 0).
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Affine skew products of the plane Topological conjugacy classes

Theorem

Assume that ω ∈ Dγ,τ , and a is an invertible C r(τ) function. Then the
skew-product is topologically conjugate to one of the following:

a) If wind(a(θ), 0) = 0 and the Lyapunov exponent is negative,

θ̃ = θ + ω,
z̃ = 1

2z ,

}
b) If wind(a(θ), 0) = 0 and the Lyapunov exponent is positive,

θ̃ = θ + ω,
z̃ = 2z ,

}
c) If wind(a(θ), 0) = 0 and the Lyapunov exponent is zero,

θ̃ = θ + ω,
z̃ = e iρz ,

}
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Affine skew products of the plane Topological conjugacy classes

Theorem (cont.)

d) If wind(a(θ), 0) = n 6= 0 and the Lyapunov exponent is negative,

θ̃ = θ + ω,
z̃ = 1

2e inθz ,

}
e) If wind(a(θ), 0) = n 6= 0 and the Lyapunov exponent is positive,

θ̃ = θ + ω,
z̃ = 2e inθz ,

}
f) If wind(a(θ), 0) = n 6= 0 and the Lyapunov exponent is zero,

θ̃ = θ + ω,
z̃ = e inθz ,

}
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Affine skew products of the plane Lyapunov exponents

Lyapunov exponents

Definition

Let us consider a linear quasi-periodic skew product given by a ∈ Cr (T,C),
r ≥ 0. Fix θ ∈ T, we define the Lyapunov exponent at θ of the
skew-product as

λ(θ) = lim sup
n→∞

1

n
ln

∣∣∣∣n−1∏
j=0

a(θ + jω)

∣∣∣∣.
We also define the Lyapunov exponent of the skew-product as

Λ =
1

2π

∫
T

ln |a(θ)| dθ.
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Affine skew products of the plane Lyapunov exponents

Theorem

Let us consider a one-parametric family of quasi-periodic cocycles

z̃ = a(θ, µ)z ,

θ̃ = θ + ω,

}
where ω is Diophantine, µ belongs to an open nonempty interval I ⊂ R
and a ∈ C∞(T× I ,C). We assume that

1 There exists a unique pair (θ0, µ0) such that a(θ0, µ0) = 0.

2

∂a

∂θ
(θ0, µ0) 6= 0, Im

∂a
∂µ(θ0, µ0)

∂a
∂θ (θ0, µ0)

6= 0,
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Affine skew products of the plane Lyapunov exponents

Theorem (cont.)

then, the Lyapunov exponent Λ(µ) is a continuous function of µ such that

1 It is C∞ at any µ 6= µ0.

2 It is C0 at µ = µ0 and there exist constants A+ and A−, for which,
when µ→ µ0, the following expression holds:

Λ(µ) = Λ(µ0) + A±(µ− µ0) +O(|µ− µ0|2)

where A+ is used when µ > µ0 and A− when µ < µ0. The values A+

and A− never coincide.
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Affine skew products of the plane Fractalization

Fractalization

Definition (Fractalization process)

Consider a curve zµ ∈ Cr (T,C), r ≥ 1, depending on a real parameter µ.
We say that the curve undergoes a fractalization process if there exists
some critical value µ? such that

lim sup
µ→µ?

‖z ′µ‖I ,∞
‖zµ‖∞

=∞,

where ‖ · ‖I ,∞ denotes the sup norm on a nontrivial closed interval I .
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Affine skew products of the plane Fractalization

Definition (Wild winding process)

Let zµ ∈ Cr (T,C), r ≥ 1 and S any subset of C. If for any s ∈ S there
exists a monotonically increasing sequence {µj}j∈N such that

1 lim
j→∞

µj = µ?,

2 for each j , zµj (θ) 6= s for all θ ∈ T
3 and lim

j→∞
|wind(zµj , s)| =∞,

then we say that zµ is undergoing a wild winding process on S from below
when µ→ µ?.
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Affine skew products of the plane Fractalization

Theorem

Assume that ω is of constant type. Consider

z̃ = µei θz + c , θ̃ = θ + ω,

where z ∈ C, θ ∈ T and µ ∈ R is a parameter. Then:

1 This system has a unique invariant curve zµ for each µ 6= 1. The
invariant curve is attracting if µ < 1 and repelling if µ > 1.

2 The invariant curve undergoes a fractalization process when µ→ 1.
Moreover, if µ→ 1,

‖z ′µ‖∞
‖zµ‖∞

= O(1− µ)−1.

3 The invariant curve undergoes a wild winding process on C when
µ→ 1. Moreover, if µ→ 1,

wind(zµ, s) = O(1− µ)−1 for each s ∈ C.
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Affine skew products of the plane Fractalization

The proof is based in several facts. The first one is that, due to the
simplicity of the model, it is not difficult to find a Fourier series for the
invariant curve. For instance, if µ < 1, the invariant curve is given by

zµ(θ) = c
∞∑
k=0

µke−i
k(k+1)

2
ωei kθ.

(a similar expression can be derived if µ > 1). Note that this series defines
an analytic function.
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Affine skew products of the plane Fractalization

The second (and key) fact is found in a paper by Hardy & Littlewood:
Some problems of diophantine approximation, Acta Mathematica 37:1,
pp. 193-239 (1914).

The results in this paper show that, for ω of constant type, the value of
the series grows to infinity when µ goes to 1. More concretely,

zµ(θ) = O(1− µ)−1/2,

z ′µ(θ) = O(1− µ)−3/2.

The last fact in the proof is based on the argument principle.
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Affine skew products of the plane Fractalization
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Figure: A winding process on D0(1) is displayed. Invariant curve with n = 1 and
c =
√

1− µ. Plots for µ = 0.5, µ = 0.9, µ = 0.99 and µ = 0.999.
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À. Jorba, P. Rabassa, and J.C. Tatjer.
Superstable periodic orbits of 1D maps under quasi-periodic forcing
and reducibility loss.
Discrete Contin. Dyn. Syst. Ser. A, 34(2):589–597, 2014.
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