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Special curves

P3 is the dynamical moduli space of cubic polynomials
modulo affine conjugacy.
M2 is the dynamical moduli space of quadratic rational
maps modulo conjugacy by Möbius transformations.
Sk ,n ⊂P3 (resp. Vk ,n ⊂M2) is the curve of conjugacy
classes of cubic polynomials (resp. quadratic rational
maps) having a critical point preperiodic to a cycle of
period n with preperiod k .
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Irreductibility

Conjecture (Milnor)
For all n ≥ 1, the curve S0,n is irreducible.

Theorem (Arfeux-Kiwi)
For all n ≥ 1, the curve S0,n is irreducible.

Theorem (B.-Epstein-Koch)
For all k ≥ 0, the curve Sk ,1 is irreducible.

Theorem (B.-Epstein-Koch)
For all k ≥ 2, the curve Vk ,1 is irreducible.
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Equation of Sk ,1

Fa,b(z) = z3 − 3a2z + 2a3 + b, (a,b) ∈ C2.
P3 is obtained by identifying (a,b) with (−a,−b).

Pk := F ◦k
a,b(a) :

P0 = a, P1 = b and Pk+1 = P3
k − 3a2Pk + 2a3 + b.

Fa,b(z)− Fa,b(w) = (z − w)(z2 + zw + w2 − 3a2).

Qk := P2
k−1 + Pk−1Pk + P2

k − 3a2.

(b − a) divides Qk and so, Qk = (b − a)Rk .

Proposition
The polynomial Rk is irreducible.
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Equation of Sk ,1

R1 = 2a + b
R2 = (2a + b)2(b − a)3 − 3b(2a + b)(a− b) + 3(a + b).
R3 = (2a + b)6(b − a)11 + · · ·+ 3(a + b).
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Behavior near the origin

From now on, k ≥ 2.

Lemma
The homogeneous part of least degree of Rk is 3(a + b).

Corollary

The polynomial Rk ∈ Z[a,b] is irreducible over C if and only if it
is irreducible over Q.

Proof: the curve {Rk = 0} contains a non singular point with
rational coordinates.
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Behavior near infinity

Lemma
The homogeneous part of highest degree of Rk is

(b − a)4·3k−2−1 · (2a + b)2·3k−2
.

Corollary

The curve {Rk = 0} intersects the line at infinity at two points:
[1 : 1 : 0] with multiplicity 4 · 3k−2 − 1, and [1 : −2 : 0] with
multiplicity 2 · 3k−2.
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Intersection with the line {a = 0}

fb(z) := F0,b(z) = z3 + b,

pk (b) := Pk (0,b), qk (b) := Qk (0,b) and rk (b) := Rk (0,b).
pk+1 = p3

k + b, qk+1 = p2
k + pkpk+1 + p2

k+1.
qk = brk = bsk .

Proposition (Goksel)
The polynomial sk ∈ Z[b] is irreductible over Q.

Proof:
Work in F3[b].

pk ≡ b3k−1
+ b3k−2

+ · · ·+ b3 + b (mod 3).

pk+1 − pk ≡ b3k
(mod 3).

sk ≡ b2·3k−1−2 (mod 3).
Since sk (0) = 3, apply the Eisenstein criterion.
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