
Dynamics of meromorphic maps on invariant
Fatou components

Krzysztof Barański

University of Warsaw

Barcelona, 27 March 2019



Attracting basins for the map N(z) = z(z + ez)/(z + 1),
Newton’s method of F (z) = 1 + zez .



Periodic Fatou components of transcendental maps
Let f : C→ C be a transcendental entire or meromorphic map.

The Fatou set consists of points z ∈ C such that the family of
iterates {f n}n≥0 is defined and normal in some neighbourhood of z .
Let U ⊂ C be an periodic Fatou component, i.e. a connected
component of the Fatou sets such that f p(U) ⊂ U for some p ≥ 1.
By the Classification Theorem, f p|U has one of the following types:

z0
z0

∞z0

attracting basin

Siegel disc Baker domain

parabolic basin

Herman ring



Lifting the map f on U
A periodic Fatou component U is a hyperbolic domain, i.e.
a domain whose complement in C contains at least two points. By
the Uniformization Theorem, there exists a universal holomorphic
covering π from the open unit disc D onto U, and f p|U can be
lifted by π to a holomorphic map g : D→ D with commuting
diagram

D g−−−−→ Dyπ

yπ

U
f p−−−−→ U

If U is simply connected, then π is a Riemann map conjugating f p

to g . For meromorphic maps U need not be simply connected!

Denjoy–Wolff Theorem
Let g : D→ D be a non-constant holomorphic map, which is not a
Möbius automorphism of D. Then there exists the Denjoy–Wolff
point ζ ∈ D, such that gn → ζ as n→∞ almost uniformly on D.



Fixed point case

Suppose f p has a fixed point z0 ∈ U. Then U is either
an attracting basin or a Siegel disc.

Definition
A domain W ⊂ U is absorbing for f p, if f p(W ) ⊂W and for
every compact K ⊂ U there exists n ≥ 0 such that f pn(K ) ⊂W .

Attracting basin case
If U is an attracting basin of z0, then there is a simply connected
absorbing domain W for f p in U (a neighbourhood of z0), such
that f (W ) ⊂W and

⋂∞
n=0 f

n(W ) = {z0}.

Siegel disc case
If U is a Siegel disc, then there is no absorbing domain for f p in U.
Moreover, g is an elliptic Möbius automorphism of D.



No fixed point case

Suppose f p has no fixed point in U. Then U is a parabolic basin,
Herman ring or Baker domain. Moreover, g is of non-elliptic type,
i.e. its Denjoy–Wolff point ζ is in ∂D. In this case we have:

Theorem (Baker–Pommerenke–Cowen ∼1980)
There exists a simply connected absorbing domain V ⊂ D for g ,
a domain Ω equal to the right half-plane H or C, a holomorphic
map ϕ : D→ Ω, and a Möbius transformation T : Ω→ Ω, such
that ϕ ◦ g = T ◦ ϕ on D and ϕ is univalent on V .
We have one of the three following cases:

Ω = H, T (ω) = aω, a > 1 hyperbolic type
Ω = H, T (ω) = ω ± i simply parabolic type
Ω = C, T (ω) = ω + 1 doubly parabolic type



Parabolic basin and Herman ring case

Parabolic basin case
If U is a parabolic basin of z0, then there exists a simply connected
absorbing domain W for f p in U (an attracting petal of z0), such
that f (W ) ⊂W ∪ {z0} and

⋂∞
n=0 f

n(W ) = {z0}. Moreover, g is
of doubly parabolic type.

Herman ring case
If U is a Herman ring, then there is no absorbing domain for f p

in U. Moreover, g is of hyperbolic type.



Baker domain case

Suppose U is a Baker domain. Then we have the following.

Theorem (König 1999)
Assume that every closed curve γ ⊂ U is eventually contractible
in U (i.e. there exists n ≥ 0 such that f pn(γ) is contractible in U).
Then there exists a simply connected absorbing domain W for f p

in U, such that f (W ) ⊂W and
⋂∞

n=0 f
n(W ) = ∅. Moreover, the

above assumption is satisfied if f has at most finitely many poles.

Theorem (BFJK1 2014–2015)
For any Baker domain U, there exists an absorbing domain W
for f p in U, such that f (W ) ⊂W and

⋂∞
n=0 f

n(W ) = ∅. If g is
of doubly parabolic type, then W can be chosen to be simply
connected.
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Examples
Theorem (BFJK 2015)
There exist meromorphic maps of the form

f (z) = z + 1 +
∑
p∈P

ap
(z − p)2 , ap ∈ C \ {0},

where the set of poles P ⊂ C has one of the three following forms:
(i) P = iZ = {im : m ∈ Z},
(ii) P = Z or Z+,
(iii) P = Z + iZ = {j + im : j ,m ∈ Z},
with an invariant Baker domain U such that:
• in the case (i) f |U is of doubly parabolic type, so there exists a

simply connected absorbing domain in U for f ,
• in the case (ii)–(iii) f |U is not of doubly parabolic type and

there is no simply connected absorbing domain in U for f .



Accesses to boundary points

From now on, assume U is simply connected. By ∂U denote the
boundary of U in C.
Fix z0 ∈ U. For v ∈ ∂U let

Γv = {γ : [0, 1)→ U : γ(0) = z0 and lim
t→1−

γ(t) = v}.

Definition
A point v ∈ ∂U is accessible from U, if there exists a curve
γ ∈ Γv . We also say that γ lands at v .
Let v ∈ ∂U be accessible. An access to v from U is a homotopy
class of curves within Γv .

Remark
The choice of z0 is irrelevant for the definition of an access.



A domain with infinitely many accesses to infinity.



Correspondence between accesses and radial limits of the
Riemann map

Let
ϕ : D→ U

be a Riemann map from the open unit disc D onto U with ϕ(0) = z0.
We consider radial limits of ϕ at points ζ ∈ ∂D

RL(ϕ, ζ) = lim
t→1−

ϕ(tζ)

(existing for a.e. ζ ∈ ∂D by the Fatou Theorem).

Correspondence Theorem
Let v ∈ ∂U. Then there is a one-to-one correspondence between
accesses to v from U and points ζ ∈ ∂D, such that RL(ϕ, ζ) exists
and is equal to v .



Accesses to infinity for transcendental entire maps

Theorem (Devaney–Goldberg 1987)
Let f (z) = λez , λ ∈ C, such that f has a (completely) invariant
attracting basin U. Then U has uncountably many accesses to
infinity, the Riemann map ϕ : D→ U has radial limits at all points
of ∂D, and those where the limit is equal to infinity occur at a
dense set in ∂D.

Theorem (Baker–Domínguez 1999)
For every transcendental entire map f with an invariant Fatou
component U, which is not a univalent Baker domain, if U has an
access to infinity, then it has infinitely many accesses to infinity.
Moreover, if U is not a Baker domain, then the Riemann map
ϕ : D→ U has radial limits equal to infinity on a dense set of ∂D.



Accesses to infinity for entire maps in class B

The Eremenko–Lyubich class is defined as

B = {f : the set of singularities of f −1 is bounded}.

Theorem (KB2 2007)
For every transcendental entire map f from class B of disjoint type
(i.e. hyperbolic with a unique (attracting) Fatou component U),
the domain U has uncountably many accesses to infinity and the
Riemann map ϕ : D→ U has unrestricted limits equal to infinity on
a dense set of ∂D.
If, additionally, f has finite order, then ϕ has radial limits at all
points of ∂D.
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Accesses to infinity from an attracting basin of an exponential map.



Invariant accesses

For simplicity, assume U is invariant. Fix a curve η connecting z0
to f (z0) in U. Let v ∈ ∂U.

Definition
Let A be an access to v from U.
A is invariant, if f (γ) ∪ η ∈ A for some γ ∈ A.
A is strongly invariant, if f (γ) ∪ η ∈ A for every γ ∈ A.

Remark
Since U is simply connected, the choice of the curve η is irrelevant.

Remark
Periodic accesses can be defined analogously. These are related to
landing periodic rays in simply connected invariant Fatou
components, e.g. basins of infinity for polynomials.



Invariant vs. strongly invariant accesses

Example (Invariant access which is not strongly invariant)
Let f : C→ C, f (z) = z + tan z and U = {z ∈ C : Im(z) > 0}.
Then U is an invariant Baker domain of f and the access to infinity
defined by the curve iR+ is invariant, but not strongly invariant.

Example (Strongly invariant access)
Let f : C→ C, f (z) = z − tan z , Newton’s method of
F (z) = sin z . Then f has infinitely many basins of attraction Uk ,
k ∈ Z, of superattracting fixed points kπ, and every Uk has two
strongly invariant accesses to infinity.

Characterization of strongly invariant accesses
Let A be an invariant access to v from U. Then A is strongly
invariant if and only if for every γ ∈ A the curve f ◦ γ lands at
some point in ∂U.



Dynamical invariant access

Example
Every simply connected invariant Baker domain U has a dynamical
invariant access to infinity, defined by the curve γ =

⋃
n≥0 f

n(η),
where η joins a point z0 ∈ U to f (z0) within U. Similarly, every
simply connected invariant parabolic basin U has a dynamical
invariant access to a parabolic fixed point v ∈ ∂U.



Newton maps

Definition
Let F : C→ C be an entire map. A Newton map is the
meromorphic map

N(z) = z − F (z)

F ′(z)
,

which is Newton’s method of finding zeroes of F .

Properties of Newton maps
The fixed points of N in C are precisely the zeroes of F , and all of
them are attracting. For rational Newton maps (F polynomial or
F = peq, p, q polynomials), infinity is a weakly repelling fixed point,
otherwise it is an essential singularity. This implies that Newton
maps have no Siegel discs and no fixed points in the Julia set.

Theorem (Shishikura 2009, BFJK 2014)
All Fatou components of a Newton map are simply connected.



Accesses to infinity for rational Newton maps
Theorem (Hubbard–Schleicher–Sutherland 2001)
If F is a polynomial and U is an invariant basin of attraction to a
zero of F for the Newton’s method N applied to F , then the
number of accesses to infinity from U is finite and equal to the
number of critical points of N in U, counted with multiplicity.



Accesses to infinity for transcendental Newton maps

Example (Baker–Domínguez 1999)
Let N(z) = z + e−z , Newton’s method applied to F (z) = e−e

z
.

Then N has infinitely many invariant Baker domains Uk , k ∈ Z,
such that Uk = U0 + 2kπi , degN|Uk

= 2 and Uk has infinitely
many accesses to infinity.



Accesses to infinity for transcendental Newton maps
Theorem (BFJK 2017)

(a) If degN|U = d <∞, then there are no invariant accesses from
U to points v ∈ ∂U ∩C and exactly D invariant accesses from
U to infinity, where D is the number of fixed points of g in
∂D. Moreover, D ≥ 1 and d − 1 ≤ D ≤ d + 1.

(b) If degN|U =∞ and N|U is singularly nice, then there are
infinitely many invariant accesses to infinity from U.

Remark
N|U is singularly nice e.g. if at least one singularity of the
associated inner function

g : D→ D, g = ϕ−1 ◦ N|U ◦ ϕ

is isolated. A point ζ∗ ∈ ∂D is a singularity of g , if g does not
extend analytically to any neighbourhood of ζ∗.



Accesses for Newton maps with a completely invariant
Fatou component

Theorem (BFJK 2017)
If N has a completely invariant Fatou component V 6= U, then

degN|U ∈ {1, 2,∞}

and for every v ∈ ∂U there is at most one access to v from U.
Moreover,
(a) if degN|U ∈ {1, 2}, then U has a unique access A to ∞

and A is invariant,
(b) if degN|U = 1, then ∂U does not contain a pole of N

accessible from U,
(c) if degN|U = 2, then ∂U contains exactly one accessible pole

of N.



Example 1
Let N(z) = z − tan z , Newton’s method of F (z) = sin z . Then:
(a) N has infinitely many immediate basins of attraction Uk ,

k ∈ Z, such that Uk = U0 + kπ and degN|Uk
= 3.

(b) Each basin Uk has exactly two accesses to infinity, and they
are strongly invariant.

(c) ∂Uk contains exactly two accessible poles of N.



Example 2
Let N(z) = z + i + tan z , Newton’s method of
F (z) = exp

(
−
∫ z
0

du
i+tan u

)
. Then:

(a) N has a completely invariant Baker domain U, in particular
degN|U =∞.

(b) U has infinitely many strongly invariant accesses to infinity
and the dynamical access to infinity from U is invariant but
not strongly invariant.

(c) ∂U contains infinitely many accessible poles of N.
(d) The inner function associated to N|U has a unique singularity

in ∂D, so N|U is singularly nice.
(e) N has infinitely many invariant Baker domains Uk , k ∈ Z,

such that Uk = U0 + kπ and degN|Uk
= 2.

(f) Uk has exactly one access to infinity, and it is strongly
invariant.

(g) ∂Uk contains exactly one accessible pole of N.





Example 3
Let N(z) = ez (z−1)

ez+1 , Newton’s method of F (z) = z + ez . Then:
(a) N has a completely invariant immediate superattracting basin

U0, in particular degN|U0 =∞.
(b) U0 has infinitely many invariant accesses to infinity.
(c) The inner function associated to N|U0 has a unique singularity,

so N|U0 is singularly nice.
(d) N has infinitely many superattracting basins Uk , k ∈ Z \ {0},

such that Uk has at most one access to infinity.



Thank you for attention!



Theorem (BFJK 2017)
Suppose infinity is accessible from U. Set d = deg f |U . Then:
(a) If 1 < d <∞ and ∂U ∩ C contains no poles of f accessible

from U, then U has infinitely many accesses to infinity, from
which at most d + 1 are invariant.

(b) If d =∞ and ∂U contains only finitely many poles of f
accessible from U, then U has infinitely many accesses to
infinity.



Inner functions associated to Fatou components

Let
g : D→ D, g = ϕ−1 ◦ f ◦ ϕ.

Then g is the inner function associated to f |U , with radial limits
belonging to ∂D at almost every point of ∂D.

Definition
A point ζ∗ ∈ ∂D is a singularity of g , if g does not extend
analytically to any neighbourhood of ζ∗.

Remark
If deg g <∞, then g is a finite Blaschke product which extends
to C.
If deg g =∞, then g has at least one singularity in ∂D.



Inner functions and boundary fixed points

Definition
A point ζ ∈ ∂D is a (radial) boundary fixed point of the inner
function g , if RL(g , ζ) = ζ.

Fact
By the Julia–Wolff Lemma, at every boundary fixed point ζ the
map g has an angular derivative limt→1−

g(tζ)−ζ
tζ−ζ , which is either

a positive real number or infinity.

Definition
A boundary fixed point ζ ∈ ∂D of g is called regular, if the angular
derivative of g at ζ is finite.



Accesses and boundary fixed points

Definition
A fixed point z of f is weakly repelling, if |f ′(z)| > 1 or f ′(z) = 1.

Theorem (BFJK 2017)

(a) If A is an invariant access from U to a point v ∈ ∂U, then v
is either infinity or a fixed point of f and A corresponds to a
boundary fixed point ζ ∈ ∂D of the inner function g .

(b) If ζ ∈ ∂D is a regular boundary fixed point of g , then RL(ϕ, ζ)
exists and is equal to v , where v is either infinity or a weakly
repelling fixed point of f in ∂U. Moreover, ζ corresponds to
an invariant access to v from U.



Singularly nice maps

Definition
The map f |U is singularly nice if there exists a singularity ζ∗ ∈ ∂D
of the inner function g associated to f |U , such that the angular
derivative of g is finite at every point ζ in some punctured
neighbourhood of ζ∗ in ∂D.

Remark
If g has an isolated singularity in ∂D, then f |U is singularly nice.

Proposition
If deg f |U =∞ and there exists a non-empty open set W ⊂ U,
such that for every z ∈W the set f −1(z) ∩ U is contained in the
union of a finite number of curves in U landing at some points of
∂U, then f |U is singularly nice.



Let

IA(U) = {invariant accesses from U to its boundary points}
IA(∞,U) = {invariant accesses from U to infinity}

IA(wrfp,U) = {invariant accesses from U to weakly repelling fixed
points of f in ∂U}.

Theorem (BFJK 2017)

(a) If deg f |U = d <∞, then IA(U) = IA(∞,U) ∪ IA(wrfp,U)
and IA(U) has exactly D elements, where D is the number of
fixed points of g in ∂D. Moreover, D ≥ 1 (unless U is an
invariant Siegel disc) and d − 1 ≤ D ≤ d + 1.

(b) If deg f |U =∞ and f |U is singularly nice, then
IA(∞,U) ∪ IA(wrfp,U) is infinite.

(c) If U is bounded, then f has a weakly repelling fixed point in
∂U accessible from U, or U is an invariant Siegel disc.



Three lemmas to prove theorem on accesses
Lemma 1
Let U ⊂ C be a simply connected domain. Suppose that
γ0, γ1 : [0, 1)→ U are curves such that γ0(0) = γ1(0) = z0 and γ0
lands at v ∈ ∂U. If there exists c > 0 such that
%U(γ0(t), γ1(t)) < c for every t ∈ [0, 1), then γ1 lands at v
and γ0, γ1 are in the same access to v from U.

Lemma 2
Let g : D→ D be a holomorphic map and ζ ∈ ∂D a regular
boundary fixed point of g . Then there exists c > 0 such that
%D(g(tζ), tζ) < c for every t ∈ [0, 1).

Lemma 3 (Modified Snail Lemma)
Let f : C→ C be a meromorphic map and U a simply connected
invariant Fatou component of f . Suppose that a curve
γ : [0, 1)→ U lands at a fixed point v ∈ ∂U of f and there exists
c > 0 such that %U(f (γ(t)), γ(t)) < c for every t ∈ [0, 1). Then
v is a weakly repelling fixed point of f .


