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1. Motivation

For every rational number p=q there is a unique periodic orbit in R=Z under
the doubling map t 7! 2t (mod Z) whose rotation number is p=q:
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1. Motivation

Similarly, for every irrational number � , there is a unique compact invariant
(Cantor) set in R=Z whose rotation number under doubling is � :
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1. Motivation
These “rotation sets” under doubling describe angles of the external rays that
land on the boundary of the main cardioid of the Mandelbrot set:
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1. Motivation

Problem: Extend this theory to higher degrees.

� Abstract part: Classification of rotation sets under multiplication by
d � 2.

� Concrete part: Realizing rotation sets in suitable spaces of degree d
polynomials.
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2. Monotone maps of the circle

� T D R=Z is the unit circle

� A map g W T! T is degree 1 monotone if it lifts to G W R! R which is
non-decreasing and satisfies G.x C 1/ D G.x/C 1 for all x.
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2. Monotone maps of the circle

� Consider the sets

A� D
n
p

q
W Gıq.x/ > x C p for all x

o
AC D

n
p

q
W Gıq.x/ < x C p for all x

o
;

where p; q are integers with q > 0.

� The pair .A�; AC/ is a Dedekind cut of Q:
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2. Monotone maps of the circle

� The translation number of G is defined as

�.G/ D supA� D infAC:

� It is easy to see that

�.G/ D lim
n!1

Gın.x/ � x

n
for any x 2 R:

Thus, �.G/ measures the average translation per iterate that each point
experiences under repeated applications of G.

Definition
The rotation number �.g/ is the residue class modulo Z of the translation
number �.G/, often identified with its representative in Œ0; 1/.
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2. Monotone maps of the circle

� Example: For 0 � � < 1, the rigid rotation

r� .t/ D t C � .mod Z/

has rotation number �.r� / D � .

� Rotation number determines cyclic order of orbit points: If �.g/ D � , and if
the triple

rıi� .0/; r
ıj

�
.0/; rık� .0/

has positive cyclic order, so does

gıi .t/; gıj .t/; gık.t/

for every t 2 T.
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2. Monotone maps of the circle

Theorem
Suppose �.g/ D p=q in lowest terms. Then,

(i) g has a periodic orbit of length q.

(ii) All periodic orbits of g have length q.

(iii) If the points of a periodic orbit are labeled in positive cyclic order as
t1; : : : ; tq , then g.tj / D tjCp.

(iv) !.t/ is a periodic orbit for every t 2 T.

Recall that
!.t/ D

\
n�1

˚
gın.t/; gınC1.t/; gınC2.t/; : : :

	
is the set of all accumulation points of the g-orbit of t .



2. Monotone maps of the circle

� Example: �.g/ D 2=5
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The 5-cycle C D ft1; : : : ; t5g has combinatorial rotation number 2=5.
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If � is the unique invariant measure supported on C , then

'.t/ D �Œ0; t �:



2. Monotone maps of the circle

Now suppose �.g/ D � is irrational.

Theorem (Poincaré)
There exists a degree 1 monotone map ' W T! T such that ' ı g D r� ı '.
Moreover, ' is unique up to postcomposition with a rigid rotation.

We call the map ' normalized by '.0/ D 0 the Poincaré semiconjugacy
between g and r� .
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2. Monotone maps of the circle

Theorem
Suppose ' is the Poincaré semiconjugacy between g and r� :

(i) If ' is a homeomorphism, then !.t/ D T for all t 2 T.

(ii) If ' is not a homeomorphism, there is a g-invariant Cantor set K such
that !.t/ D K for every t 2 T.

The compact set K in case (ii) is called the Cantor attractor of g. It can be
described as the complement of the union of the plateaus of '.
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3. Rotation sets

� Fix an integer d � 2 and define md W T! T by

md .t/ D d � t .mod Z/

Definition
A non-empty compact set X � T is a rotation set for md if

� md .X/ D X , and

� the restriction md jX extends to a degree 1 monotone map of the circle.

Thus, md is order-preserving on X , except that it may identify some pairs.
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� Example:
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3. Rotation sets

Every rotation set is nowhere dense, whereas a randomly chosen point on the
circle has a dense orbit under md .

Theorem
The union of all rotation sets for md has Lebesgue measure zero.
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3. Rotation sets

Let X be a rotation set for md .

Definition
The rotation number �.X/ 2 Œ0; 1/ is defined as the rotation number of any
degree 1 monotone extension g of md jX .

� �.X/ D p=q in lowest terms iff X has a q-cycle under md .
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4. Gaps and their dynamics

Definition
� A connected component of T rX is called a gap of X .

� A gap of length ` is minor if ` < 1=d , and major otherwise.

� A major gap is taut if d � ` is an integer, and loose otherwise.

� The multiplicity of a major gap is the integer part of d � `.



4. Gaps and their dynamics
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4. Gaps and their dynamics
Suppose X is not a single (fixed) point. Define the standard monotone map g
as follows:
On a minor gap, set g D md .
On a major gap .a; aC `/ of multiplicity n, set

g.t/ D

(
md .a/ t 2 .a; aC n=d�

md .t/ t 2 .aC n=d; aC `/:

I1 I2 I3 I1

I1

I2

I3
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4. Gaps and their dynamics

Theorem
If X is not a single point, it has d � 1 major gaps counting multiplicities.

Theorem
Suppose X is not a single point and I is a gap of length `.

(i) If I is minor, the image g.I / is a gap of length d � `.

(ii) If I is taut, g.I / is a single point in X .

(iii) If I is loose, g.I / is a gap of length fd � `g.
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4. Gaps and their dynamics

Corollary
Suppose X is not a single point and I is a gap of X . Then either I is periodic
or it eventually maps to a taut gap.

Corollary
If �.X/ is irrational, every gap of X eventually maps to a taut gap. In
particular, at least one major gap of X is taut.
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5. Minimal rotation sets

A minimal rational rotation set is a cycle.

Theorem
Every rotation set X for md with
�.X/ D p=q contains finitely many cycles
C1; : : : ; CN where 1 � N � d � 1.
Moreover,

(i) Each Ci is a q-cycle with
combinatorial rotation number p=q.

(ii) For i ¤ j the cycles Ci and Cj are
“superlinked.”

(iii) X r .C1 [ � � � [ CN / is at most
countable, with every point eventually
mapping to C1 [ � � � [ CN under the
iterations of md .

C
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5. Minimal rotation sets

� Example: Under the tripling map m3 there are five 4-cycles of rotation
number 1=4:
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5. Minimal rotation sets

But only four unions of superlinked pairs form rotation sets:

C1 [ C2
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5. Minimal rotation sets

Now consider the irrational case.

Theorem
Every irrational rotation set X for md contains a unique minimal rotation set
K. Moreover,

(i) K is the Cantor attractor of any monotone extension of md jX .

(ii) Each gap of K contains at most finitely many points of X , all of which
eventually map to K under the iterations of md .

Corollary
Suppose X is a minimal rotation set for md with �.X/ D � irrational. Then
there exists a degree 1 monotone map ' W T! T, whose plateaus are precisely
the gaps of X , which satisfies ' ımd D r� ı ' on X .
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