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(Cantor) set in R/Z whose rotation number under doubling is 6:
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1. Motivation

These “rotation sets” under doubling describe angles of the external rays that
land on the boundary of the main cardioid of the Mandelbrot set:
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1. Motivation

Problem: Extend this theory to higher degrees.

e Abstract part: Classification of rotation sets under multiplication by
d>2.

e Concrete part: Realizing rotation sets in suitable spaces of degree d
polynomials.



2. Monotone maps of the circle

e T = R/Z is the unit circle

e Amap g : T — T is degree 1 monotone if it lifts to G : R — R which is
non-decreasing and satisfies G(x + 1) = G(x) + 1 for all x.
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2. Monotone maps of the circle

e Consider the sets
A” = {B :G%(x) > x + p for allx}
AT = {g : G%(x) < x + p for allx},

where p, g are integers with g > 0.

e The pair (A~, A™) is a Dedekind cut of Q:

A A"




2. Monotone maps of the circle

e The translation number of G is defined as

7(G) =sup A~ =infA™,



2. Monotone maps of the circle

e The translation number of G is defined as
7(G) =sup A~ =infA™,
e It is easy to see that

G (x) —
(G) = li)m & for any x € R.
n—o00 n

Thus, 7(G) measures the average translation per iterate that each point
experiences under repeated applications of G.



2. Monotone maps of the circle

e The translation number of G is defined as
7(G) =sup A~ =infA™,
e It is easy to see that

G (x) —
7(G) = lim & for any x € R.
n—o00 n

Thus, 7(G) measures the average translation per iterate that each point
experiences under repeated applications of G.

Definition

The rotation number p(g) is the residue class modulo Z of the translation
number 7(G), often identified with its representative in [0, 1).
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2. Monotone maps of the circle

e Example: For 0 < 6 < 1, the rigid rotation
rg(t) =t +6 (mod Z)

has rotation number p(rg) = 6.

e Rotation number determines cyclic order of orbit points: If p(g) = 6, and if
the triple . .
rg (0). g’ (0). rgf(0)

has positive cyclic order, so does
g7, 7. g%

for every t € T.



2. Monotone maps of the circle

Theorem

Suppose p(g) = p/q in lowest terms. Then,
(i) g has a periodic orbit of length q.

(ii) All periodic orbits of g have length q.

(iii) If the points of a periodic orbit are labeled in positive cyclic order as
... tg, then g(tj) =tj4p.

(iv) w(t) is a periodic orbit for every t € T.

Recall that

o) = () {g(0), g+ 1(1), g +2(1), ...}

n>1

is the set of all accumulation points of the g-orbit of 7.




2. Monotone maps of the circle

e Example: p(g) = 2/5

The 5-cycle C = {t1, ..., 5} has combinatorial rotation number 2 /5.
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2. Monotone maps of the circle
e Example: p(g) = 2/5
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We call ¢ the combinatorial semiconjugacy associated with the cycle C:

QOog=Tp/g0Q on C.
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e Example: p(g) = 2/5
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The cycle C is the complement of the union of the “plateaus” of ¢.
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e Example: p(g) = 2/5
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If w is the unique invariant measure supported on C, then

@(t) = pnl0,1].



2. Monotone maps of the circle

Now suppose p(g) = 0 is irrational.

Theorem (Poincaré)
There exists a degree 1 monotone map ¢ : T — T such that ¢ o g = rg o .
Moreover, ¢ is unique up to postcomposition with a rigid rotation.




2. Monotone maps of the circle

Now suppose p(g) = 0 is irrational.

Theorem (Poincaré)

There exists a degree 1 monotone map ¢ : T — T such that ¢ o g = rg o .
Moreover, ¢ is unique up to postcomposition with a rigid rotation.

We call the map ¢ normalized by ¢(0) = O the Poincaré semiconjugacy
between g and ryg.

T — T



2. Monotone maps of the circle

Theorem

Suppose @ is the Poincaré semiconjugacy between g and rg:
(i) If ¢ is a homeomorphism, then w(t) = T forallt € T.

(ii) If ¢ is not a homeomorphism, there is a g-invariant Cantor set K such
that w(t) = K for everyt € T.




2. Monotone maps of the circle

Theorem
Suppose @ is the Poincaré semiconjugacy between g and rg:
(i) If ¢ is a homeomorphism, then w(t) = T forallt € T.

(ii) If ¢ is not a homeomorphism, there is a g-invariant Cantor set K such
that w(t) = K for everyt € T.

The compact set K in case (ii) is called the Cantor attractor of g. It can be
described as the complement of the union of the plateaus of ¢.
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There is a unique g-invariant measure y supported on K which maps to
Lebesgue measure under ¢:

Pxft = A.



2. Monotone maps of the circle
e Example: p(g) = (v/5—1)/2

0.84

0.67

0.41

0.24

There is a unique g-invariant measure y supported on K which maps to
Lebesgue measure under ¢:

Pxft = A.

Similar to the rational case, we have ¢(t) = [0, f].
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3. Rotation sets

e Fix an integer d > 2 and define my : T — T by
mg(t)=d-t (modZ)

Definition
A non-empty compact set X C T is a rotation set for m ; if
e my(X) =X, and
e the restriction m | x extends to a degree 1 monotone map of the circle.

Thus, my is order-preserving on X, except that it may identify some pairs.



3. Rotation sets

e Example:
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3. Rotation sets

Every rotation set is nowhere dense, whereas a randomly chosen point on the
circle has a dense orbit under m.
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Every rotation set is nowhere dense, whereas a randomly chosen point on the
circle has a dense orbit under m.

Theorem

The union of all rotation sets for mg; has Lebesgue measure zero.
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Let X be a rotation set for m;.

Definition

The rotation number p(X) € [0, 1) is defined as the rotation number of any
degree 1 monotone extension g of mg|x.




3. Rotation sets

Let X be a rotation set for m;.

Definition

The rotation number p(X) € [0, 1) is defined as the rotation number of any
degree 1 monotone extension g of mg|x.

e p(X) = p/q in lowest terms iff X has a g-cycle under m .



4. Gaps and their dynamics

Definition

e A connected component of T \ X is called a gap of X.
e A gap of length £ is minor if £ < 1/d, and major otherwise.
e A major gap is taut if d - £ is an integer, and loose otherwise.

e The multiplicity of a major gap is the integer part of d - £.




4. Gaps and their dynamics
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4. Gaps and their dynamics

Suppose X is not a single (fixed) point. Define the standard monotone map g
as follows:

On a minor gap, set g = my.

On a major gap (a, a + £) of multiplicity n, set

mg(a) te€(a,a+n/d]
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4. Gaps and their dynamics

Suppose X is not a single (fixed) point. Define the standard monotone map g
as follows:

On a minor gap, set g = my.
On a major gap (a, a + £) of multiplicity n, set
mg(a) te(a,a+n/d]

8 = {md(t) te@+n/da+0)
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4. Gaps and their dynamics

Theorem J

If X is not a single point, it has d — 1 major gaps counting multiplicities.
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Theorem

If X is not a single point, it has d — 1 major gaps counting multiplicities.

Theorem

Suppose X is not a single point and I is a gap of length {.
(i) If I is minor, the image g(I) is a gap of length d - {£.
(it) If I is taut, g(1) is a single point in X.

(iii) If I is loose, g(1) is a gap of length {d - £}.




4. Gaps and their dynamics

Corollary

Suppose X is not a single point and I is a gap of X. Then either I is periodic
or it eventually maps to a taut gap.




4. Gaps and their dynamics

Corollary
Suppose X is not a single point and I is a gap of X. Then either I is periodic
or it eventually maps to a taut gap.

Corollary

If p(X) is irrational, every gap of X eventually maps to a taut gap. In
particular, at least one major gap of X is taut.




5. Minimal rotation sets

A minimal rational rotation set is a cycle.

Theorem

Every rotation set X for mg with

o(X) = p/q contains finitely many cycles
Ci,...,Cny wherel <N <d —1.
Moreover;

(i) Each C; is a g-cycle with
combinatorial rotation number p/q.

(ii) Fori # j the cycles C; and C; are
“superlinked.”

(iii) X ~ (Cy U---U Cy) is at most
countable, with every point eventually
mapping to C1 U --- U Cy under the
iterations of mgy.
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Theorem

Every rotation set X for mg with

p(X) = p/q contains finitely many cycles
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(i) Each C; is a g-cycle with
combinatorial rotation number p/q.
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5. Minimal rotation sets

e Example: Under the tripling map m3 there are five 4-cycles of rotation
number 1/4:
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5. Minimal rotation sets

e Example: Under the tripling map m3 there are five 4-cycles of rotation
number 1/4:

co. Lo 3 o w
1+ %0 80 80 80
2,6 18 s
230 80 80 80
oS b 4SS
3 %0 80 80 80

C 41 43 49 67
" 80 80 80 80




5. Minimal rotation sets

But only four unions of superlinked pairs form rotation sets:
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5. Minimal rotation sets

Now consider the irrational case.
Theorem

Every irrational rotation set X for m; contains a unique minimal rotation set
K. Moreover,

(i) K is the Cantor attractor of any monotone extension of my|x.

(ii) Each gap of K contains at most finitely many points of X, all of which
eventually map to K under the iterations of mg.




5. Minimal rotation sets

Now consider the irrational case.

Theorem

Every irrational rotation set X for m; contains a unique minimal rotation set
K. Moreover,

(i) K is the Cantor attractor of any monotone extension of my|x.

(ii) Each gap of K contains at most finitely many points of X, all of which
eventually map to K under the iterations of mg.

Corollary

Suppose X is a minimal rotation set for mg with p(X) = 0 irrational. Then
there exists a degree 1 monotone map ¢ : T — T, whose plateaus are precisely
the gaps of X, which satisfies p omg =rgo @ on X.




