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[Rees, Tan, Shishikura] Suppose      and      are post-critically 
finite. Then     and     are mateable if and only if    and     do 
not belong in conjugate limbs.



The Basilica Family



Consider                                                  .

         is a superattracting 2-periodic orbit.

The Basilica Family



Consider                                                  .

         is a superattracting 2-periodic orbit.

    is a free critical point, and       is a free critical value.

The Basilica Family



The Basilica Polynomial



The Basilica Polynomial



The Basilica Polynomial



a-planec-plane



Can the basilica family be understood as the set of matings 
of the quadratic family with the basilica polynomial?

a-planec-plane
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If      is parabolic, then it is mateable with     .                  
(An application of transquasiconformal surgery due to 
Haïssinsky.)

If      is Cremer, then its Julia set is non-locally connected. 
Hence it is non-mateable with     .
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Main challenge: Prove that puzzle pieces shrink to points.

Puzzle Partition
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Blaschke Product Model

An adaptation of construction found in [Yampolsky, Zakeri].
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Critical Puzzle Pieces

Using complex a priori bounds, can show that all puzzles 
shrink. Therefore,      and      are mateable.



Thank you for your attention!


