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Mating Construction [Douady, Hubbard]

K.V Ky

Je fd feV fa
K,V Ky = (K, U Ky)/{7a(0) ~ 74(—0)}

f fcV fa can be realized by a rational map, we say that f.
and fq are mateable.
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‘Rees, Tan, Shishikura] Suppose f. and fa are post-critically
finite. Then f. and fqare mateable if and only if ¢ and d do
not belong in conjugate limbs.
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Consider R,(z) = > i 5, 0 O € C\ {0} .

{00,0} is a superattracting 2-periodic orbit.

—1 is a free critical point, and —a is a free critical value.
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M={c|0¢ Ax} Mp:={a| —1¢ B}

Can the basilica family be understood as the set of matings
of the quadratic family with the basilica polynomial?
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If fc is hyperbolic, then it is mateable with 5.

[Aspenberg, Yampolsky] If fe is finitely renormalizable,
and has no non-repelling periodic orbits, then it is
mateable with /5.

[D. Dudko] If f. is at least 4 times renormalizable, then
it is mateable with fB.
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Boundary of Hyperbolic Components

If fc lives in the boundary of a hyperbolic component,
then it is either: parabolic, Cremer, or Siegel.

f fc is parabolic, then it is mateable with 5 .

(An application of transquasiconformal surgery due to
Haissinsky.)

f fc is Cremer, then its Julia set is non-locally connected.
Hence it is non-mateable with fa.
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Puzzle Partition

Main challenge: Prove that puzzle pieces shrink to points.
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An adaptation of construction found in [Yampolsky, Zakeri].
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Critical Puzzle Pieces

Using complex a priori bounds, can show that all puzzles
shrink. Therefore, fs and /B are mateable.



Thank you for your attention!



