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We consider the differential equation:

ż = P(z), P ∈ C[X ].

We denote by ξP the poynomial vector field defined by P .
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Introduction

We consider the differential equation:

ż = P(z), P ∈ C[X ].

We denote by ξP the poynomial vector field defined by P .
Let ζ be a root of the polynomial P . Then the vector field ξP
associated to P admits an equilibrium point (or singularity) at the
point ζ, and this singularity can be of four different types:

ζ is a source if Re(P ′(ζ)) > 0.

ζ is a sink if Re(P ′(ζ)) < 0.

ζ is a center if Re(P ′(ζ)) = 0 and Im(P ′(ζ)) 6= 0.

ζ is a multiple equilibrium point of multiplicity m ≥ 2 if
P ′(ζ) = . . . = P (m−1)(ζ) = 0 and P (m)(ζ) 6= 0.
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Bassins

A given singularity ζ determines the behavior of the solutions
passing through a neighborhood of it. This zone of influence is
called bassin, denoted by B(ζ), and is defined as follows:
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Bassins

A given singularity ζ determines the behavior of the solutions
passing through a neighborhood of it. This zone of influence is
called bassin, denoted by B(ζ), and is defined as follows:

If ζ is a source, B(ζ) = {z ∈ C | γ(t, z) → ζ for t → −∞}.
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If ζ is a center, B(ζ) = {ζ} ∪ {z ∈ C |
γ(., z) is periodic and ζ is in the bounded component of C \
γ(R, z)}.
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Bassins

A given singularity ζ determines the behavior of the solutions
passing through a neighborhood of it. This zone of influence is
called bassin, denoted by B(ζ), and is defined as follows:

If ζ is a source, B(ζ) = {z ∈ C | γ(t, z) → ζ for t → −∞}.

If ζ is a sink, B(ζ) = {z ∈ C | γ(t, z) → ζ for t → +∞}.

If ζ is a center, B(ζ) = {ζ} ∪ {z ∈ C |
γ(., z) is periodic and ζ is in the bounded component of C \
γ(R, z)}.

If ζ is a multiple equilibrium point,
B(ζ) = Bα(ζ) ∪ Bω(ζ) ∪ {ζ}, where

Bα(ζ) = {z 6= ζ | γ(t, z) → ζ for t → −∞}.

Bω(ζ) = {z 6= ζ | γ(t, z) → ζ for t → +∞}.
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Separatrix

there exist 2n − 2 solutions γl , with l ∈ {0, . . . , 2n − 3}, of the
polynomial differential equation ż = P(z) defined in a
neighborhood of infinity and asymptotic to the ray t.δl for t large
enough, where δl is the consecutive 2(n − 1)-th roots of unity.
we call separatrices of the vector field ξP , noted sl , the maximal
trajectories of ξP which coincide with the particular solutions γl .
We distinguish three types of separatrices:
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Separatrix

there exist 2n − 2 solutions γl , with l ∈ {0, . . . , 2n − 3}, of the
polynomial differential equation ż = P(z) defined in a
neighborhood of infinity and asymptotic to the ray t.δl for t large
enough, where δl is the consecutive 2(n − 1)-th roots of unity.
we call separatrices of the vector field ξP , noted sl , the maximal
trajectories of ξP which coincide with the particular solutions γl .
We distinguish three types of separatrices:

an outgoing separatrix.

an incoming separatrix.

a homoclinic separatrix.

First Modelisation

The separatrix graph ΓP allows to identify the topological
structure of polynomial vector fields.
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Equivalence relation

Definition

Let P , Q be two monic, centered polynomials of degree n, and ΓP ,
ΓQ be their respective separatrix graphs. We say that P is
topologically equivalent to Q, denoted by P ∼top Q, if there exists
an isotopy h : D× [0, 1] → D that sends separatrices of ΓP to
separatrices of ΓQ .
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graph ΓP is embedded in D). Such a component is called zone and
can be of three different types:
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Zones

Let Z be a connected component of D \ ΓP (where the separatrix
graph ΓP is embedded in D). Such a component is called zone and
can be of three different types:

1. a center zone.

2. a sepal zone.

3. an αω-zone.

Second Modelisation

The transversal graph ΣP .
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Definition

A treelike equivalence relation on the circle is a closed
equivalence relation such that for any two distinct equivalence
classes, their convex hulls in the unit disk are disjoint.
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Let R be a treelike equivalence relation, there is an associated
lamination Lam(R) of the open disk, where the leaves of Lam(R)
consist of boundaries of convex hulls of equivalence classes
intersected with the open disk.
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i. If there is a leaf with endpoints x and y , then either xd = yd

or there is a leaf with endpoints xd and yd .

ii. If there is a leaf with endpoints x and y , there is a set of d

disjoint leaves with one endpoints in x1/d and the other
endpoint in y1/d .

A critical gap is a gap that maps with degree greater than 1. The
criticality of a gap is its degree minus 1.
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Primitive majors

A lamination is degree d invariant if

i. If there is a leaf with endpoints x and y , then either xd = yd

or there is a leaf with endpoints xd and yd .

ii. If there is a leaf with endpoints x and y , there is a set of d

disjoint leaves with one endpoints in x1/d and the other
endpoint in y1/d .

A critical gap is a gap that maps with degree greater than 1. The
criticality of a gap is its degree minus 1.

Proposition

For any degree d invariant lamination λ, the total criticality of λ
equals d − 1.
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gaps.

J. Tomasini A combinatorial point of view of some dynamic problems.



On a combinatorial description of polynomial vector fields.
Degree d invariant laminations

Branched coverings of the sphere

Primitive majors

Definition

A major for a degree d invariant lamination is the set of critical
gaps.

A major is called primitive if each (critical) gap is a polygon whose
vertices are all identified by z 7→ zd . We denote by PM(d) the set
of all primitive degree d majors.
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First values

n p̃n

2 1
3 2
4 4
5 9
6 27
7 94
8 364
9 1529
10 6689
11 30230
12 140114
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Branched covering of the sphere

Branched coverings of the sphere can be represented by bipartite
planar maps having two properties:

(global) there are as many black vertices as faces.

(local) for any (strict) subset F of faces of the map, the
number of black vertex belonging to at least one face of F is
strictly greater than the number of face in F .
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(354)(23)(1532)(145) = 1
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