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Introduction

We consider the differential equation:

ż = P(z), P ∈ C[X ].

We denote by ξP the poynomial vector field defined by P .
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Introduction

We consider the differential equation:

ż = P(z), P ∈ C[X ].

We denote by ξP the poynomial vector field defined by P .
Let ζ be a root of the polynomial P . Then the vector field ξP
associated to P admits an equilibrium point (or singularity) at the
point ζ, and this singularity can be of four different types:

ζ is a source if Re(P ′(ζ)) > 0.

ζ is a sink if Re(P ′(ζ)) < 0.

ζ is a center if Re(P ′(ζ)) = 0 and Im(P ′(ζ)) 6= 0.

ζ is a multiple equilibrium point of multiplicity m ≥ 2 if
P ′(ζ) = . . . = P (m−1)(ζ) = 0 and P (m)(ζ) 6= 0.
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Bassins

A given singularity ζ determines the behavior of the solutions
passing through a neighborhood of it. This zone of influence is
called bassin, denoted by B(ζ), and is defined as follows:
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Bassins

A given singularity ζ determines the behavior of the solutions
passing through a neighborhood of it. This zone of influence is
called bassin, denoted by B(ζ), and is defined as follows:

If ζ is a source, B(ζ) = {z ∈ C | γ(t, z) → ζ for t → −∞}.
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If ζ is a sink, B(ζ) = {z ∈ C | γ(t, z) → ζ for t → +∞}.

If ζ is a center, B(ζ) = {ζ} ∪ {z ∈ C |
γ(., z) is periodic and ζ is in the bounded component of C \
γ(R, z)}.
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Bassins

A given singularity ζ determines the behavior of the solutions
passing through a neighborhood of it. This zone of influence is
called bassin, denoted by B(ζ), and is defined as follows:

If ζ is a source, B(ζ) = {z ∈ C | γ(t, z) → ζ for t → −∞}.

If ζ is a sink, B(ζ) = {z ∈ C | γ(t, z) → ζ for t → +∞}.

If ζ is a center, B(ζ) = {ζ} ∪ {z ∈ C |
γ(., z) is periodic and ζ is in the bounded component of C \
γ(R, z)}.

If ζ is a multiple equilibrium point,
B(ζ) = Bα(ζ) ∪ Bω(ζ) ∪ {ζ}, where

Bα(ζ) = {z 6= ζ | γ(t, z) → ζ for t → −∞}.

Bω(ζ) = {z 6= ζ | γ(t, z) → ζ for t → +∞}.
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Separatrix

there exist 2n − 2 solutions γl , with l ∈ {0, . . . , 2n − 3}, of the
polynomial differential equation ż = P(z) defined in a
neighborhood of infinity and asymptotic to the ray t.δl for t large
enough, where δl is the consecutive 2(n − 1)-th roots of unity.
we call separatrices of the vector field ξP , noted sl , the maximal
trajectories of ξP which coincide with the particular solutions γl .
We distinguish three types of separatrices:
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Separatrix

there exist 2n − 2 solutions γl , with l ∈ {0, . . . , 2n − 3}, of the
polynomial differential equation ż = P(z) defined in a
neighborhood of infinity and asymptotic to the ray t.δl for t large
enough, where δl is the consecutive 2(n − 1)-th roots of unity.
we call separatrices of the vector field ξP , noted sl , the maximal
trajectories of ξP which coincide with the particular solutions γl .
We distinguish three types of separatrices:

an outgoing separatrix.

an incoming separatrix.

a homoclinic separatrix.

First Modelisation

The separatrix graph ΓP allows to identify the topological
structure of polynomial vector fields.
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Equivalence relation

Definition

Let P , Q be two monic, centered polynomials of degree n, and ΓP ,
ΓQ be their respective separatrix graphs. We say that P is
topologically equivalent to Q, denoted by P ∼top Q, if there exists
an isotopy h : D× [0, 1] → D that sends separatrices of ΓP to
separatrices of ΓQ .
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graph ΓP is embedded in D). Such a component is called zone and
can be of three different types:
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Zones

Let Z be a connected component of D \ ΓP (where the separatrix
graph ΓP is embedded in D). Such a component is called zone and
can be of three different types:

1. a center zone.

2. a sepal zone.

3. an αω-zone.

Second Modelisation

The transversal graph ΣP .
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Definition

A treelike equivalence relation on the circle is a closed
equivalence relation such that for any two distinct equivalence
classes, their convex hulls in the unit disk are disjoint.
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lamination Lam(R) of the open disk, where the leaves of Lam(R)
consist of boundaries of convex hulls of equivalence classes
intersected with the open disk.
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i. If there is a leaf with endpoints x and y , then either xd = yd

or there is a leaf with endpoints xd and yd .

ii. If there is a leaf with endpoints x and y , there is a set of d

disjoint leaves with one endpoints in x1/d and the other
endpoint in y1/d .

A critical gap is a gap that maps with degree greater than 1. The
criticality of a gap is its degree minus 1.
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Primitive majors

A lamination is degree d invariant if

i. If there is a leaf with endpoints x and y , then either xd = yd

or there is a leaf with endpoints xd and yd .

ii. If there is a leaf with endpoints x and y , there is a set of d

disjoint leaves with one endpoints in x1/d and the other
endpoint in y1/d .

A critical gap is a gap that maps with degree greater than 1. The
criticality of a gap is its degree minus 1.

Proposition

For any degree d invariant lamination λ, the total criticality of λ
equals d − 1.
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A major for a degree d invariant lamination is the set of critical
gaps.

A major is called primitive if each (critical) gap is a polygon whose
vertices are all identified by z 7→ zd . We denote by PM(d) the set
of all primitive degree d majors.
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First values

n p̃n

2 1
3 2
4 4
5 9
6 27
7 94
8 364
9 1529
10 6689
11 30230
12 140114
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Branched covering of the sphere

Branched coverings of the sphere can be represented by bipartite
planar maps having two properties:

(global) there are as many black vertices as faces.

(local) for any (strict) subset F of faces of the map, the
number of black vertex belonging to at least one face of F is
strictly greater than the number of face in F .
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(354)(23)(1532)(145) = 1
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