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Introduction

Let f be a rational map of degree d ≥ 3. crit(f )-set of critical points of f .
Its post-critical set is

Post(f ) =
⋃
n≥0

f ◦n(crit(f ))

If the number of accumulation points of post-critical set of a map is finite
then the map is called geometrically finite, so no Herman ring and no
Siegel disks are there. In this talk all maps are geometrically finite rational
maps. If g.f. rational map does not have parabolic periodic points then it
is called sub-hyperbolic. It is known that, Julia set of g.f. rational map has
measure zero.



Newton Maps

Definition: Let p(z) be a polynomial of deg ≥ 3, its Newton map is

Np(z) := z − p(z)

p′(z)

Some properties of Newton map, clearly the roots of p(z) = 0 are fixed
points of Newton map, moreover, ∞ is a repelling fixed point of Newton
map and for each root of p(ξi ) = 0 of multiplicity mi ≥ 1,
N ′p(ξ) = (mi − 1)/mi . Simple roots are superattracting fixed points of
Newton map.

Observe that for polynomials p and q we have the uniform limit

lim
n→∞

N
p(z)(1+ q(z)

n
)n

(z) = z − p(z)

p′(z) + p(z)q′(z)
= Np(z)·Exp(q(z))(z)
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Theorem (Rational Newton Map)

Let f : C→ C be an entire map: polynomial or transcendental function.
Its Newton map Nf is rational if and only if there are polynomials p(z)
and q(z) such that f has the form f (z) = p(z) · Exp(q(z)). In this case,
∞ is a repelling or parabolic fixed point.

More precisely, let m, n ≥ 0 be the degrees of p and q, respectively. If
m = 1 and n = 0, then Nf is constant. If m ≥ 2 and n = 0 , then ∞ is
repelling with multiplier m

m−1 . If n ≥ 1, then ∞ is parabolic with multiplier
+1 and multiplicity n + 1 ≥ 2.

(Obviously, the roots of peq are those of p.) Rational Newton map has a
form

Npeq(z) = z − p(z)

p′(z) + p(z)q′(z)

for polynomials p and q.
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Theorem (Shishikura)

If a rational map has only one fixed point which is repelling or parabolic
with multiplier 1, then its Julia set is connected. In particular, Julia set of
a (rational) Newton map is connected.

Definition ( Immediate Basin)

Let f be a (rational) Newton map and ξ ∈ C be its fixed point. Let
Aξ = {z ∈ C : limn→∞ f ◦n(z) = ξ} be the basin (of attraction) of ξ. The
component of Aξ containing ξ is called the immediate basin of ξ and
denoted Uξ.

Theorem (Immediate Basins Simply connected)

The immediate basin of a rational Newton map is simply connected and
unbounded.

For a Newton map of f = peq, the area of every immediate basin is finite
if deg(q) ≥ 3 [Mako Haruta] and infinite if p(z) = z and deg(q) ∈ {0, 1}
[Figen Cilinger]. Within immediate basin rational Newton maps can be
easily characterized.
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Theorem

Let Nf be a (rational) Newton map of f = peq and ξ ∈ C is a root of p
and U = Uξ be its immediate basin. Then U contains k ≥ 1 critical points
of Nf and Nf |U is a proper self-map of degree k + 1.

If we use the fact that immediate basins are simply connected then we see
that restricted maps Nf |U are conformal conjugate to Blaschke products:
Let R be a Riemann map R : U → D then R ◦ Nf |U ◦ R−1 is a Blaschke
product.



Parabolic fixed points

Let ξ ∈ C be a fixed point of f . If f ′(ξ) is a k -th root of unity:
f ′(ξ) = e2πi m

k then

f ◦k(z) = ξ + c(z − ξ)n+1 + O((z − ξ)n+2)

near ξ, n + 1 is called multiplicity of ξ and k |n. There are n attracting and
repelling directions alternating at ξ. In this talk multiplier of parabolic
fixed point will be +1.

We denote
Aξ = {z ∈ C : lim

n→∞
f ◦n(z) = ξ}

the basin (of attraction) of parabolic fixed point ξ. By definition the
immediate basin is the unique forward invariant connected component of
Aξ. Thus, there are n immediate basins denoted by Uj , j ∈ {1..n}.
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Surgery method

Theorem (P. Haissinsky)

Let f be a sub-hyperbolic rational map of degree deg(f ) ≥ 2 with
connected Julia set and with an attracting fixed point α and a repelling
fixed point β ∈ ∂Uα and accessible from the basin Uα. Then there exist a
rational map g of the same degree as f has and a David homeomorphism
φ : C→ C, such that:

1 φ ◦ f = g ◦ φ on C \ Uα; in particular φ : Jf → Jg is a
homeomorphism which conjugates f and g on the Julia sets.

2 φ is conformal on C \ Aα-in the complement of basin of α

3 β′ = φ(β) is a parabolic fixed point with multiplier +1 and φ(Uα) is
one of the immediate parabolic basins of β′

Remark 1. If you start with attracting periodic point with k period and β
is a repelling periodic point on the boundary with k ′ period and k ′|k then
theorem holds true. In this case β′ = φ(β) is a k ′ periodic parabolic point
with multiplier k/k ′ root of unity.
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Application of surgery to Newton maps

Remark 2. You can also take finite number of basins with repelling fixed
point at the common boundary and simultaneously apply the surgery. This
is crucial fact for changing basins of Newton maps. Resulting map will be
a rational map which satisfies all properties of being a rational Newton
map. Since it has one parabolic fixed point, so, it is a Newton map of peq

for some polynomials p and q. We have the following.

Theorem

Let Np be a sub-hyperbolic Newton map of polynomial p. Let the number
of different roots of p be m + n ≥ 3. Note that also, deg(Np) = m + n.
Take n ≥ 1 roots ξj ,j ∈ {1..n} and immediate basins Uξj ,j ∈ {1..n}. Then
there is a David homeomorphism φ and polynomials p̃ and q̃ of degree
m,n, respectively, such that Np and Np̃e q̃ are conformal conjugate on

C \
⋃

1≤j≤n Aξj : in particular they are conjugate on Julia sets.
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David-Beltrami equation

We consider Beltrami differential (form) µdz̄
dz for which there exists

homeomorphic solutions φ : U → U ′ of the Beltrami equation

∂̄φ = µ∂φ

with φ ∈W 1,r
loc , r ≥ 1, where U,U ′ are domains of C. W 1,r

loc is the Sobolev
space of L1

loc(U) functions with Lr
loc(U) distributional derivatives ∂̄φ, ∂φ.

Let w = f (z) be C 1 homeomorphism then differential is

df = ∂fdz + ∂̄fd z̄

and complex dilatation of f is Kf = 1+|µf |
1−|µf | , where µf = ∂̄f

∂f
dz̄
dz -Beltrami

form of f on domain U.

Definition

Beltrami differential µ = µ(z)dz̄dz is called David-Beltrami differential if
there exist constants M > 0, α > 0 and K0 > 1 such that

∀K > K0 : Area({z ∈ U|Kµ(z) =
1 + |µ(z)|
1− |µ(z)|

> K}) ≤ Me−αK



Theorem (David)

Any Beltrami-David equation has a solution φ : U → U ′ o-p
homeomorphism in L1

loc(U) such that:

φ belongs to Lr
loc(U) for all 0 < r < 2

φ is unique by post composition by a conformal map.

φ is absolutely continuous: For a measurable set E ⊂ U

area(E ) = 0⇐⇒ area(φ(E )) = 0

Such a map is called David homeomorphism.



Haissinsky surgery. Local dynamics of model maps.

Let us sketch a proof of Haissinsky theorem. We consider the map
f : z → λz with λz > 1 (repelling model map) and sector
S = {z ∈ C |Arg(z)| < θ and 0 < |z | < 1}.
The mapping

z → w =
logλ

Log(z)

conjugates f to g : w → w
w+1 (parabolic model map) defined at the cusp

Cusp = w(S) at the origin. Denote by Q f
n -the quadrilateral bounded by

segments [ 1
λn+1 e±iθ, 1

λn e±iθ] and arcs of radius 1
λn+1 and 1

λn contained in
D \ S .

Lemma

There exists extension z → w(z) to a neighborhood of the origin a
piecewise C 1 homeomorphism χ, such that Kχ ≈ n on Q f

n

Here for positive numbers a ≈ b means there exists positive constant c
such that 1

c <
a
b < c .
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Proof of lemma.

It is easy to check the following map is an extension we need. Define

χ : D \ S → D \ Cusp

by

χ : ρe it → logλ

|log(ρ) + iθ|
· e iaρ(t)

where aρ(t) is an affine map and it can be computed easily making the
extension continuous.

χ takes arcs of circles to arcs of circles. Let Qg
n = χ(Q f

n ), since
mod(Q f

n ) ≈ 1 and mod(Qg
n ) ≈ log(1 + 1

n ) ≈ 1
n we get

Kχ ≈
mod(Q f

n )

mod(Qg
n )
≈ n
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Comparison of basins

As we know from above that, restriction map is conjugate to Blaschke
product. We have to understand how Model maps are transforming into
each other. Let

B(z) =
zd + b

1 + bzd
and Bpar (z) =

zd + a

1 + azd

be two Blaschke products, where 0 < b < a = d−1
d+1 . Both leave unit disc,

unit circle and compliment of closed unit disc invariant. JB = JBpar = S1.
1 is repelling fixed point for B and parabolic for Bpar , with B ′par (1) = 1. 0
and ∞ are the only critical points of both maps. B has a fixed point α in
the interval (0, 1), with real multiplier. Immediate basins are Uα = D and
for parabolic fixed point 1 of Bpar we have U1 = D and U2 = C \ D



Lemma (Blaschke surgery)

There exist a homeomorphism φ : D→ D piecewise C 1 and sector SB ⊂ D
which is a neighborhood of α with vertex at 1 s.t.

1 for all z ∈ D\SB we have φ ◦ B(z) = Bpar ◦ φ(z)

2 There is a set S ′B which is intersection of SB with some neighborhood
of 1, such that φ : D\

⋃
B−n(S ′B)→ φ(D\

⋃
B−n(S ′B)) is a

quasiconformal map.

3 On quadrilaterals QB
n in S ′B defined as Q f

n for repelling model map,
we have Kφ ≈ n for all n large

Sketch of proof. Note that construction of conjugating map φ is
essentially the same as model maps. If you are close to 1 then as we did
for model maps we construct conjugacy between B and Bpar in the
complement of sector at 1. In that sector we just make the map to be
smooth and homeomorphism as above lemma. Since Fatou map and
linearizing maps are conformal, the dilatation of φ stays to be ≈ n.



Topological surgery

Let f be a sub-hyperbolic map with an attracting fixed point α with real
multiplier f ′(α) having only one critical point in the immediate basin
U = Uα. Let R be a Riemann map R : U → D so that R ◦ f |U ◦ R−1 is a
Blaschke product. Let φ be a homeomorphism defined in above Blaschke
lemma, which partially conjugates B and Bpar . Let B̂ = φ ◦ Bpar ◦ φ−1,
note that B̂ = B on D\SB .
Let H = R−1 ◦ B̂ ◦ R on U.

Let us define topological model map G =

{
H(z), if z ∈ U;
f(z), elsewhere.

We want to define G -invariant complex structure. Let µ̂ = ∂̄φ/∂φ, then
it is invariant by B̂. Naturally we pull it back to the immediate basin by
R : µ = R∗µ̂. We spread it by dynamics and define almost complex

structure by µ =

{
(fn)∗µ, on f −n(U);
0, otherwise.
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µ is Beltrami-David form

By construction µ is G -invariant.

Lemma

If β 6∈ Post(f ) then µ is a Beltrami-David form.

Proof There exist linearizable neighborhood V of 1 disjoint from Post(f ).
Note that f −1(V ) ⊂⊂ V , let Σβ = f −1(V ) ∩ R−1(S ′B). Set ρ = |f ′(β)|
and Kµ dilatation of µ. Using Blaschke surgery lemma and Koebe
distortion theorem we obtain

Area({z ∈ Σβ|Kµ > n}) ≈ (1/ρ2n)Area(Σβ)

Let X = ∪f k (y)=βΣy -union of all domains under all preimages of Σβ

under map f . Using the fact that f k : (f −k(V ), y)→ (V , β) is conformal
we get following estimate
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cont..

Area({z ∈ Ĉ : Kµ > n}) =
∑

k≥0

∑
f k (y)=β Area(z ∈ Σy : Kµ > n)

≤ (Cρ−2n)Area(X ),
for some constant C . Since we are working in sphere with spherical metric,
the area of X is finite. This ends the proof of lemma.

Finishing the proof of Haissinsky theorem

Since φ satisfies Beltrami-David differential equation, when G is injective
we need to check that φ ◦ G ∈W 1,1

loc (C\∂U) and is also solution of the
same Beltrami-David equation.
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Thank you !!!


