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Thurston Maps

F : S — S? finite degree branched cover from the 2-sphere to itself
Cr is the set of critical points

m The postcritical set of F is given by

Pr=|J F(CF).
i>0
m If |Pg| is finite, F is said to be postcritically finite

A Thurston map is a postcritically finite orientation-preserving branched
cover F : S — S2 where deg(F) > 2.
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Thurston Equivalence

Let F and G be Thurston maps. Then F is Thurston equivalent to G if
there are orientation preserving homeomorphisms

ho, h1 : (S?, PE) — (5%, Pg)

with hg homotopic to h; rel Pr, so that the following commutes:

(52, Pr) —% (52, Pg)
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Newton Maps

Definition

A rational function f : C — C of degree d > 3 is a Newton map if there
exists a polynomial p such that for every z € C, f(z) = z — p(z)/p/(2)

Theorem (Y. Mikulich, D. Schleicher,~)

There is a bijection between the set of postcritically finite Newton maps
up to affine conjugacy and the set of abstract extended Newton graphs up
to Thurston equivalence.
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Newton Facts

p—degree d polgr)lomial with simple roots
z

No(2) =z = )

m N, is a rational function of degree d

m Nj(o0) = d/(d —1) and is a repelling fixed point

m The roots of p correspond to finite superattracting fixed points of N,
- 1 _ pp”

(since N, = p,'p,)

A degree d rational map has d + 1 fixed points and 2d — 2 critical

points counting multiplicity

Thus the only fixed points of N, are at co and roots of p.
(Hubbard, Schleicher, Sutherland): The immediate basin of a fixed critical
point of multiplicity m has exactly m accesses to infinity.
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The Julia set for a Newton map
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Mamayusupov
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Detail of previous slid
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Definition (Abstract Channel Diagram)

An abstract channel diagram of degree d > 3 is a graph A C S? with
vertices vy, ..., Vy, Voo and edges ey, ..., g that satisfies the following
properties:

(1) I<2d-2

(2) each edge joins v, to a v;

(3) each v; is connected to vo, by at least one edge

(4)

4) if e; and e both join v, to v, then each connected component of
S2\ & U ¢ contains at least one vertex of A
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Definition (Abstract Newton Graph)

Let I C S be a connected finite graph and f : I — ' a graph map. The
pair (I, f) is called an abstract Newton graph if it satisfies the following
conditions:
(1) There exists dr > 3 and an abstract channel diagram A C I of degree
dr such that f fixes each vertex and each edge of A.
(2) The graph map f can be extended to a branched covering
f : §2 — S2 such that the following conditions (3) — (6) are satisfied.
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Definition (Abstract Newton Graph cont'd)

(3) If vi,..., Vg, Voo are the vertices of A, then v; € '\ A if and only if
i # 0o. Moreover, there are exactly deg, (f) —1 > 1 edges in A that
connect v; to vy, for i # oo.

(4) Do ver (deg,(F) — 1) < 2dr — 2.
(5) The graph I'\ A is connected.
(6) T equals the component of ?_NF(A) that contains A.
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Definition (Abstract Extended Newton Graph)

Y C S? afinite connected graph, f : ¥ — ¥ a graph map, and ¥’ the set
of vertices. A pair (X, f) is called an abstract extended Newton graph if:
(1) (Edge Types) Any two different edges in X may only intersect at
vertices of L. Every edge must be one of the following three types:
m An edge in the abstract Newton graph I
m An edge in a periodic or preperiodic abstract Hubbard tree
m A periodic or preperiodic abstract Newton ray
(2) (Abstract Newton graph) There exists a positive integer N and an
abstract Newton graph I at level N so that ' C ¥. Furthermore N is
minimal so that condition (6) holds.

(3) (Unique extendability) f can be extended to a branched covering
f :S%2 — S2 unique up to Thurston equivalence

(4) (Topological admissibility) The total number of critical points of f
counted with multiplicity is 2dr — 2, where df is the degree of the
abstract channel diagram A C T.
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Definition (Abstract Extended Newton Graph (cont'd))

(5) (Periodic Hubbard trees) There is a finite collection of distinct,

disjoint, possibly degenerate, abstract extended Hubbard trees
H; C X, where H; N\ T = (), and for each H; there is a rnin_imal positive
integer m; > 2 called the period of the tree such that £ (H;) = H,.

For all k, the forward image of f*(H;) is always some periodic
Hubbard tree.

(Preperiodic Hubbard trees) There is a finite collection of distinct,
disjoint, possibly degenerate abstract extended Hubbard trees H! C X
where H,f N T =0, and for each i there is some minimal positive
integer ¢; > 1 so that ?Zi(H,f) is a periodic Hubbard tree. This ¢; is
called the preperiod of H,f and for 1 < k < /;, the forward image
fk(H!) is always some preperiodic Hubbard tree.

(Trees separated) Any two different abstract extended Hubbard trees
lie in different complementary components of I.
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Definition (Abstract Extended Newton Graph (cont'd))

(8) (Periodic Newton Rays) For every periodic abstract extended
Hubbard tree H; of period m; and every fixed point w; of H; there
exists a periodic abstract Newton ray R; that lands at w; (note that
it is not required that R; C ¥). For every (-fixed point w; of H;, the
graph X contains exactly one periodic abstract Newton ray R; of
period m; that lands at w;, namely the rightmost such Newton ray.

(9) (Preperiodic Newton Rays) For every preperiodic tree H! of preperiod
¢; where o (H!) = H;, the following holds: for every w! € H; so that

—=; . : . : .
f'(w!) is a B-fixed point of H;, there exists exactly one preperiodic
abstract Newton ray in X that lands at w?, and whose image under

fiisa ray of period m; landing on H;.
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Background for Thurston's Theorem

A simple closed curve v in 2\ X is essential if each component of S? \ v
intersects X in at least two points. A multicurve is a collection

= {71, ...7} of disjoint essential curves where the elements of the
collection are pairwise non-homotopic. Use ¢ to denote the set of
homotopy classes of essential simple closed curves in $2\ X. Denote by
R[€F] the free R-module over €F.

Russell Lodge (Jacobs University Bremen) A combinatorial characterization of postcritic: June 10, 2013 15 / 23



The Thurston linear map A\r : R[6f] — R[@F] is defined by

1 ,
/\F(’Y):Z Z W'V

7 Y6CF ()

where v and ~/ are essential curves and the outer sum is over all 7/
homotopic to preimages of v. A Thurston obstruction is a nonempty
multicurve I so that R[[] is invariant under A\r, and the spectral radius of
AF is greater than or equal to 1.

Russell Lodge (Jacobs University Bremen) A combinatorial characterization of postcritic: June 10, 2013 16 / 23



Theorem (Thurston)

Let F be a Thurston map not equivalent to a Lattes map. Then F is
Thurston equivalent to a rational function if and only if there are no

obstructions. If this rational function exists, it is unique up to Mébius
conjugation.
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Definition (Intersection Number)

Let o and 3 each be an arc or a simple closed curve in (52, X). Their
intersection number is

a-f = #{(a NBY\X}.

oc’NOc ,3’

The intersection number extends bilinearly to arc systems and multicurves.
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We will now prove that every abstract extended Newton graph gives rise to
a postcritically finite Newton map.

Proof: Let I be an irreducible Thurston obstruction, i.e. for v,~" € I,
there exists n > 0 so that some component of f_n(v) is homotopic to v/
rel the vertices of . We will show this results in a contradiction.

mCasel: [1-A#0
mCase2: 1-A=0
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A set of pairwise non-isotopic arcs in (52, X) is called an arc system. Two
arc systems A, \ are isotopic if each curve in A is isotopic relative to X to
a unique element of A’ and vice versa.

Denote by A(°") the union of those components of f~"(A) that are
isotopic to elements of A relative X, and define [1(£°") similarly.

Theorem (Kevin Pilgrim, Tan Lei)

Let (f, X) be a marked branched covering, 11 an irreducible Thurston
obstruction and N an irreducible arc system. Suppose furthermore that
#(MNA) =T -A. Then, exactly one of the following is true:

M-A=0andM-f~"(A)=0 forall n> 1.

M-A=£0 and {or n > 1, each component ofl'l is isotopic to a unique
component of T1(f°"). The mapping £°" : N(f°") — N is a
homeomorphism and T1(f°") N (f="(A) \ A(f°")) = 0.

This theorem implies that - (I'\ A) = (), and that 1 may not intersect
the Newton rays.
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Proof of Case 1

M is an irreducible Thurston obstruction,y; € M so that 71 - A # 0
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Proof of Case 2
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Thank you for your attention!
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