Distribution of postcritically finite polynomials

Notes of my talk –

Thomas Gauthier (LAMFA – UPJV)

Tuesday June 11th, 2013

* This is a joint work with Charles Favre *

Recall that a polynomial $P \in \mathbb{C}[z]$ of degree $d \geq 2$ is *postcritically finite* (*PCF*) if its postcritical set is finite, i.e. if

$$\bigcup_{n\geq 1} P^{\circ n}(C(P))$$

is a finite set.

This implies in particular that all $c \in C(P)$ is (pre)periodic under iteration by P.

Question. How do postcritically finite polynomials equidistribute in the space of all degree d polynomials when the (pre)period of each critical point tends to ∞ ?

We would like to give an answer to this question.

1 – The quadratic case

Let us set $P_c(z) := z^2 + c$ for $c \in \mathbb{C}$. The *filled Julia set* of P_c is

 $\mathcal{K}_c := \{z \in \mathbb{C} \mid (P_c^{\circ n}(z)) \text{ is bounded}\}.$

The important picture appearing in the parameter space of the family $(P_c)_{c \in \mathbb{C}}$ is the *Mandelbrot set*

$$\mathcal{M}_2 := \{ c \in \mathbb{C} \mid (P_c^{\circ n}(0)) \text{ is bounded} \} \\ = \{ c \in \mathbb{C} \mid \mathcal{K}_c \text{ is connected} \} .$$

Let $Per(n) := \{ c \in \mathbb{C} \mid P_c^{\circ n}(0) = 0 \}.$

Fact. 1. $c_0 \in \mathbb{C} \setminus \partial \mathcal{M}_2$ if and only if as a family of holomorphic maps of c, $\{c \mapsto P_c^{on}(0)\}_{n \ge 1}$ is a normal family in a neigh. of c_0 , i.e. $\partial \mathcal{M}_2$ is the bifurcation locus, 2. $\partial \mathcal{M}_2 \subset \overline{\bigcup_{n \ge 1} \operatorname{Per}(n)}$.

Proof. Montel's Theorem.

Question. How to quantify this approximation?

Recall that the subharmonic function

 $g_{\mathcal{M}_2}(c) := g_c(c) = \lim_n 2^{-n} \log^+ |P_c^{\circ n}(c)|$ is the *Green function* of \mathcal{M}_2 and that

$$\mathcal{M}_2 = \{g_{\mathcal{M}_2}(c) = 0\}$$

Let $\mu_{\text{bif}} := dd^c g_{\mathcal{M}_2}$, then $\operatorname{supp}(\mu_{\text{bif}}) = \partial \mathcal{M}_2$. μ_{bif} is the *bifurcation*, *measure*.

Theorem (Levin). The sequence

$$\mu_n := \frac{1}{2^{n-1}} \sum_{\substack{P_c^{\circ n}(0) = 0}} \delta_c$$

converges to μ_{bif} in the weak topology of measures.

Proof of Thm Levin. Since $P_c^n(0) = 0$ has simple roots (Douady-Hubbard),

$$\mu_n = dd^c \log |P_c^{\circ n}(0)| \ .$$

We then apply Hartogs' Lemma and get $\log |P_c^{\circ n}(0)| \rightarrow g_{\mathcal{M}2}(c)$ in L^1_{loc} .

The "global method" (Baker-H'sia) allows to get an estimate on the speed of convergence:

Theorem (Favre-Rivera-Letelier). There exists C > 0, s.t. for $\varphi \in C_c^1(\mathbb{C})$ and $n \ge 1$,

$$\left|\int \varphi \,\mu_n - \int \varphi \,\mu_{\mathsf{bif}}\right| \leq C \left(\frac{n}{2^n}\right)^{1/2} \|\varphi\|_{\mathcal{C}^1} .$$

2 – The cubic case

Let us set $P_{c,a}(z) := \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$ for $(c,a) \in \mathbb{C}^2$. How to generalize \mathcal{M}_2 ?

Three different solutions:

1. The non-escaping set of $c_1 := 0$

$$\Gamma_1 := \{ (c, a) \in \mathbb{C}^2 \mid (P_{c, a}^{\circ n}(0)) \text{ is bounded} \} \\
= \{ (c, a) \in \mathbb{C}^2 \mid g_{c, a}(c_1) = 0 \},$$

2. The non-escaping set of $c_2 := c$

3. The connectedness locus

$$\mathcal{M}_3 := \{(c,a) \in \mathbb{C}^2 \mid \mathcal{K}_{c,a} \text{ is connected} \}$$
$$= \{(c,a) \in \mathbb{C}^2 \mid \max_{i=1,2} \{g_{c,a}(c_i)\} = 0 \}$$
$$= \Gamma_1 \cap \Gamma_2 .$$

2.1 - Cases 1 and 2

The set $\partial \Gamma_1$ (resp. $\partial \Gamma_2$) is the bifurcation locus of the critical point c_1 (resp. c_2). **Theorem** (Branner-Hubbard). \mathcal{M}_3 is a compact subset of \mathbb{C}^2 .

Let $\operatorname{Per}_1(n) := \{(c, a) \in \mathbb{C}^2 | P_{c,a}^{\circ n}(c_1) = c_1\}$ and $\operatorname{Per}_2(n) := \{(c, a) \in \mathbb{C}^2 | P_{c,a}^{\circ n}(c_2) = c_2\}.$

Recall that a closed positive (1,1)-current can be seen as a degenerate metric (as well as a positive measure is a degenerate volume form).

Let $T_i := dd^c g_{c,a}(c_i)$ for i = 1, 2 so that supp $(T_i) = \partial \Gamma_i$. Generalizing (non-trivially) the approach of Levin one can prove the following.

Theorem (Dujardin-Favre). The sequence $3^{-n}[\operatorname{Per}_i(n)]$ converges to T_i for i = 1, 2.

2.2 – Case 3

Let $\operatorname{Per}(n,m) := \operatorname{Per}_1(n) \cap \operatorname{Per}_2(m)$.

What plays here the role of ∂M_2 is $\partial_{Sh} M_3$: **Theorem** (Bassanelli-Berteloot, D-F).

$$\partial_{\mathsf{Sh}}\mathcal{M}_{\mathsf{3}} \subset \bigcup_{n,m \ge 1} \mathsf{Per}(n,m).$$

We generalize μ_{bif} by setting (B-B, D-F)

$$\mu_{\text{bif}} := T_1 \wedge T_2$$

= $(dd^c g_{\mathcal{M}_3}(c,a))^2$,

where $g_{\mathcal{M}_3}(c, a) := \max_{i=1,2} \{g_{c,a}(c_i)\}$. It is known that (D-F)

 $\operatorname{supp}(\mu_{\mathsf{bif}}) = \partial_{\mathsf{Sh}}\mathcal{M}_{\mathsf{3}}$.

Our main result is the following.

Theorem 1 (Favre-G.). Let $n_k \neq m_k$, with $n_k, m_k \rightarrow \infty$ as $k \rightarrow \infty$. Then the measures

$$\mu_k := \frac{1}{3^{n_k + m_k}} \sum_{(c,a) \in \operatorname{Per}(n_k, m_k)} \delta_{c,a}$$

converge to μ_{bif} .

Global method

Our proof relies on Yuan's equiditribution of points of small heights.

Let $\mathcal{P} := \{p \geq 2 \text{ prime number}\}$. For $p \in \mathcal{P} \cup \{\infty\}$, we let $|\cdot|_p$ be

$$|\cdot|_p := \left\{ \begin{array}{ll} p - \text{adic norm} & \text{if } p \in \mathcal{P} \\ \text{complex norm} & \text{if } p = \infty \end{array} \right.$$

The naive height $h: \overline{\mathbb{Q}}^2 \to \mathbb{R}_+$ is

$$h(x) := \sum_{\sigma \in \mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})} \sum_{\mathcal{P} \cup \{\infty\}} \frac{\log^+ \max_i \{|\sigma(x_i)|_p\}}{\deg(x)}$$

Let $g_{c,a,p}(z) := \lim_{n} 3^{-n} \log^{+} |P_{c,a}^{\circ n}(z)|_{p}$ and $g_{\mathcal{M}_{3},p}(c,a) := \max\{g_{c,a,p}(0), g_{c,a,p}(c)\}.$ We define a critical height $H : \overline{\mathbb{Q}}^{2} \to \mathbb{R}_{+}:$ $H(c,a) := \sum_{\sigma \in \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})} \sum_{\mathcal{P} \cup \{\infty\}} \frac{g_{\mathcal{M}_{3},p}(\sigma(c,a))}{\deg(c,a)}.$ **Theorem** (Yuan). Let $(F_k) \subset \overline{\mathbb{Q}}^2$ be a sequence of finite sets such that: (1) F_k is Galois-invariant, (2) $H|_{F_k} \equiv 0$ for all k, (3) For any algebraic curve $Z \subset \mathbb{C}^2$, $\frac{\operatorname{Card}(F_k \cap Z)}{\operatorname{Card}(F_k)} \longrightarrow 0$. Then in the sense of measures on \mathbb{C}^2 :

$$\mu_k := \frac{1}{\operatorname{Card}(F_k)} \sum_{(c,a) \in F_k} \delta_{c,a} \longrightarrow \mu_{\operatorname{bif}}$$

Let us set

$$F_k := \operatorname{Per}(n_k, m_k) \ .$$

Remark that $P_{c,a}^{\circ n}(c_i) - c_i \in \mathbb{Q}[c, a]$, i.e. that $Per(n, m) \subset \overline{\mathbb{Q}}^2$ and F_k is Galois-invariant. Moreover, $H|_{F_k} = 0$ for all k. So (1) and (2) hold.

It remains to prove that (3) holds and that $Card(F_k) \sim 3^{n_k+m_k}$ as $k \to \infty$.

Remark that there exists plenty of curve $Z \subset \mathbb{C}^2$ containing infinitely many $(c, a) \in \mathbb{C}^2$ s.t. $P_{c,a}$ is *PCF* (e.g. $\{c = 0\}$). So it is not sufficient to prove that $Card(F_k) \to \infty$. We rely on Epstein's transversality theory. The asumption $n_k \neq m_k$ is made for applying his theory. Conjecturally, it is a nonnecessary condition.

Theorem (Epstein). Let $(c, a) \in F_k$, then Per₁ (n_k) and Per₂ (m_k) are smooth and transverse at (c, a).

Then, by Bezout,

 $Card(F_k) = deg(F_k) \sim 3^{n_k + m_k}$

and $Card(F_k \cap Z)$ is at most

 $C \cdot \max\{\deg(\operatorname{Per}_1(n_k)), \deg(\operatorname{Per}_2(m_k))\},\$

i.e. $C \cdot 3^{\max(n_k, m_k)} = o(3^{n-k+m_k}).$

Further results and open questions.

The same method (plus combinatoric tools developped by Kiwi) allows to prove that Misiurewicz parameters with critical points of prescribed perperiods (and periods tending to ∞) also equidistribute towards μ_{bif} . Another consequence is the following.

Let $\operatorname{Per}_n(w) = \{(c, a) \in \mathbb{C}^2 \text{ s.t. } P_{c,a} \text{ has a cycle of exact period } n \text{ and multiplier } w\}.$

Theorem 2 (Favre-G.). Let $n_k \neq m_k$, with $n_k, m_k \rightarrow \infty$ as $k \rightarrow \infty$. Let also $(w_1, w_2) \in \mathbb{D}^2$. Then the measures

$$\mu_k := \frac{1}{3^{n_k + m_k}} \sum_{\operatorname{Per}_{n_k}(w_1) \cap \operatorname{Per}_{m_k}(w_2)} \delta_{c,a}$$

converge to μ_{bif} .

Question. What happens in the case when $|w_1| \ge 1$ and/or $|w_2| \ge 1$?