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Results Preparations for the resultsResultsDe�nition (Inner and outer boundary)Let U ⊂ C be a domain and let a ∈ C \ U. We denote by C (a,U) theomponent of C \ U that ontains a.
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De�nition (Inner onnetivity)We all (Un ∩ C (0,Bn)) the inner onnetivity of Un and de�ne theeventual inner onnetivity respetively.M. Baumgartner (University of Kiel) Boundaries of wandering domains Barelona, 11 June 2013 9 / 22
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The End
Thank you for your attention.
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