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Primitive Invertible Substitutions on Two Letters

Given two letters, a and b, consider a substitution s : {a, b} 7→ 〈a, b〉.

Extend s to 〈a, b〉 by concatenation: s(α1 · · ·αk) = s(α1) · · · s(αk).

• If there exists k such that sk(a) and sk(b) both contain letters a and b, then s is
called primitive;

• If s extends to an invertible morphism on 〈a, b〉, s is called invertible.

Suppose s is primitive and invertible.

Given a representation ρ : 〈a, b〉 → SL(2,C), there exists Fs : C3 → C3 with the
following properties.

• Fs = (fs , gs , hs) with fs , hs , gs ∈ Z[x , y , z];

• If x1 = 1
2
Tr(ρ(a)), x2 = 1

2
Tr(ρ(b)), x3 = 1

2
Tr(ρ(ab)), then

1

2
Tr(ρ(sk(a))) = π1 ◦ F k

s (x1, x2, x3) and
1

2
Tr(ρ(sk(b))) = π2 ◦ F k

s (x1, x2, x3).

Fs is called the trace map associated to s.
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Integrals of Motion

It turns out that all trace maps preserve the so-called Fricke-Vogt invariant:

I ◦ Fs(x , y , z) = I (x , y , z) where I (x , y , z) = x2 + y 2 + z2 − 2xyz .

In particular, Fs preserves the algebraic surfaces

SV
def
=
{

(x , y , z) ∈ C3 : I (x , y , z) = V
}
.

We shall concentrate on SV ∩ R3 with V ∈ R. The geometry and topology of SV

depends on V :

• If V > 0, then SV is a smooth connected manifold, which is topologically a
four-punctured sphere;

• If V = 0, then SV is connected and smooth everywhere except for four conic
singularities;

• If V ∈ (−1, 0), then SV is smooth with five connected components: a compact
topological sphere and four noncompact discs;

• If V < −1, then SV has four smooth connected components, which are topologically
two-discs.
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Integral of Motion: Plots

(a) V = 0.0001 (b) V = 0.05 (c) V = 1

(d) V = −0.0001 (e) V = −0.05 (f) V = −0.95

William N. Yessen (UC Irvine) October 1, 2012 4 / 16



The Fibonacci Trace Map

We consider a prominent example of a primitive invertible substitution: the Fibonacci
substitution s : a 7→ ab, s : b 7→ a.

The corresponding trace map is given by f (x , y , z) = (2xy − z , x , y).

Dynamics of f |SV depends on V ...
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The Fibonacci Trace Map - Pseudo Anosov on S0

• S0 ∩ [−1, 1]3 is invariant under f and is a
factor of (x , y) 7→ (x + y , y) : T2 ←↩ under the
factor map
(θ, φ) 7→ (cos 2π(θ + φ), cos 2πθ, cos 2πφ);

• The singularities lie on curves of periodic
points which are normally hyperbolic;

• Every point on the cones that does not lie on
the strong stable (unstable) manifold of a
singularity escapes to infinity in forward
(backward) time.
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The Fibonacci Trace Map - Axiom A on SV>0

• The set of points with bounded forward and
backward orbits is precisely the nonwandering
set; it is compact, locally maximal and
hyperbolic – M. Casdagli 1986 for V large; D.
Damanik & A. Gorodetski 2009 for V small;
S. Cantat 2009 for all V ;

• A point has a bounded forward (backward)
orbit if and only if it belongs to the stable
(unstable) lamination;

• All other points escape to infinity in forward
(backward) time;

• The set of points with bounded orbit in⋃
V>0 SV is partially hyperbolic;

• A point in
⋃

V>0 SV has a bounded forward
(backward) orbit if and only if it lies on a
center stable (unstable) manifold.
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Dynamical Spectrum

Given S ⊂ R3, we define its dynamical spectrum as the set of points in S whose forward
semiorbit is bounded under f ; we denote it by B∞(S).

Given a compact analytic curve γ ⊂
⋃

V>0 SV , what can be said about B∞(γ)?

B∞(γ) is the intersection of γ with the center stable manifolds;

Theorem

Either B∞(γ) is finite, it is all of γ, or it is a Cantor set of zero measure together with,
possibly, finitely many isolated points; in this case the Hausdorff dimension of B∞(γ) is
strictly between zero and one.
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Connections to Quasicrystals

Consider the sequence {un}n∈N obtained by

a 7→ ab 7→ aba 7→ abaab 7→ abaababa 7→ abaababaabaab 7→ · · · .

Extend {un} to the left arbitrarily, and call the resulting sequence {ûn}n∈Z;

Let Ω be the set of limit points of
{

T k(û)
}
k∈N, where T is the left shift. The dynamical

system (T ,Ω) is strictly ergodic.

With K(a) = 1, K(b) 6= 0, V (a) = 0 and V (b) ∈ R, to each ω ∈ Ω associate a
self-adjoint bounded linear operator Hω,K ,V : `2(Z,C)←↩:

(Hω,K ,Vψ)n = K(ûn)φn−1 + K(ûn+1)φn+1 + V (ûn)φn.

Quantum dynamics of an electron wavepacket in a quasicrystal is modeled by

φ(n, t) = e−itHφ(n, t0).

While it isn’t sufficient, it is necessary to study the spectrum of H in order to
understand the quantum dynamics.
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Connection to Quasicrystals

Theorem

The spectrum of Hω,K ,V is independent of ω ∈ Ω. Moreover, the spectrum consists of
those λ ∈ [−2, 2], for which γ(λ) ∈ B∞(γ), where

γ(λ) =

(
λ− V (b)

2
,

λ

2K(b)
,

1 + K(b)2

2K(b)

)
.

In the case K(a) = K(b) = 1:

• The problem was introduced by physicists Kohmoto et. al. and Ostlund et. al. in
1983;

• It has been extensively studied by B. Simon et. al., A. Sütò, D. Damanik et. al.
(and others) from spectral theoretic point of view;

• It has been studied by means of dynamical systems by M. Casdagli and D. Damanik
& A. Gorodetski

William N. Yessen (UC Irvine) October 1, 2012 10 / 16



Connection to Quasicrystals

Theorem

The spectrum of Hω,K ,V is independent of ω ∈ Ω. Moreover, the spectrum consists of
those λ ∈ [−2, 2], for which γ(λ) ∈ B∞(γ), where

γ(λ) =

(
λ− V (b)

2
,

λ

2K(b)
,

1 + K(b)2

2K(b)

)
.

In the case K(a) = K(b) = 1:

• The problem was introduced by physicists Kohmoto et. al. and Ostlund et. al. in
1983;

• It has been extensively studied by B. Simon et. al., A. Sütò, D. Damanik et. al.
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(and others) from spectral theoretic point of view;

• It has been studied by means of dynamical systems by M. Casdagli and D. Damanik
& A. Gorodetski

William N. Yessen (UC Irvine) October 1, 2012 10 / 16



The Fibonacci Trace Map - Conservative Homoclinic Phenomenon on SV<0

• Every point on the discs escapes to infinity;

• The spheres in the center are invariant under
f ;

• f preserves a certain area form;

• f on the spheres exhibits homoclinic
phenomena.

Denote the sphere by SV ...
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Quantum Walks

• There exist physical models (so-called quantum walks on quasicrystals) for which
the curve of initial conditions lies “inside” the surface S0 ∩ [−1, 1]3;

• Physicists observed (numerically) chaotic orbits as well as elliptic islands...
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A. Romanelli, The Fibonacci Quantum Walk and its Classical Trace Map
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The Fibonacci Trace Map - Conservative Homoclinic Phenomenon on SV<0

Theorem (Joint with A. Gorodetski)

There exists V0 ∈ (−1, 0) such that for all V ∈ (V0, 0), the map fV has a locally maximal
compact hyperbolic set ΛV in SV with the following properties.

1. The sequence {ΛV } is dynamically monotone; that is, for V2 > V1, ΛV2 contains the
continuation of ΛV1 ;

2. The Hausdorff dimension of ΛV tends to two as V tends to zero;

3. ΛV exhibits persistent generically unfolding quadratic homoclinic tangencies;

4. There exists a residual set R ⊂ (V0, 0) such that for all V ∈ R, f |SV has a nested

sequence of hyperbolic sets Λ
(0)
V ⊆ Λ

(1)
V ⊆ · · · , with Λ

(0)
V = ΛV , and the Hausdorff

dimension of Λ
(n)
V tends to two as n tends to infinity;

5. The set ΩV =
⋃

n∈N Λ
(n)
V is a transitive invariant set of f |SV whose Hausdorff

dimension is equal to two;

6. Each point of ΩV is accumulated by elliptic islands.

Question: Is ΩV of positive Lebesgue measure?
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The End

Thank You for your attention!
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