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Introduction

The Schwarzian derivative
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, (1)

plays an important role in the treatment of univalent functions, see
details in [5] and references therein. Here the dot denotes derivative
with respect to the independent variable t. When the right hand in
equation (1) is taken at zero, the resulting equation is the Kummer-
Schwarz equation which is given by

2ẋ
...
x − 3ẍ2 = 0, (2)

and is of special interest due to its relationship to the Schwarzian
derivative and its exceptional algebraic properties. This equation
is also encountered in the study of geodesic curves in spaces of
constant curvature, Lie lists the characteristic functions for its contact
symmetries, see more results on this differential equation in [1], [4],
[5] and [6]. But up to now nobody has described its global dynamics.
This will be the objective of this paper.

The Kummer-Schwarz equation of third order (2) can be written as
the following rational differential system of first order

ẋ = y, ẏ = z, ż =
3z2

2y
, (3)

in R3. Rescaling the time according to dτ/dt = 2y, we obtain the
equivalent polynomial differential system (outside the plane y = 0)

x′ = 2y2, y′ = 2yz, z′ = 3z2, (4)

here the prime denotes derivative with respect to the new independent
variable τ . This differential system is called the Kummer-Schwarz
differential system in R3.

We will study the flow of the polynomial differential system (4) in
the phase space R3, of course, in order to describe the flow of the
differential system (3) we must omit the plane y = 0.

1. Symmetries and reduction of
the flow to the quadrant y ≥ 0

and z ≥ 0

The differential system (4) is invariant under the following two sym-
metries

S1(x, y, z) = (x,−y, z), and S2(x, y, z, τ ) = (−x, y,−z,−τ ).

The symmetry S1 says that the flow of system (4) is symmetric with
respect to the plane y = 0. Therefore, if (x(τ ), y(τ ), z(τ )) is a so-
lution of (4), then (x(τ ),−y(τ ), z(τ )) is also solution of (4). The
symmetry S2 says that the flow of system (4) is symmetric with re-
spect to the y–axis reversing the sense of the orbits. Therefore, if
(x(τ ), y(τ ), z(τ )) is a solution of (4), then (−x(−τ ), y(τ ),−z(−τ ))
is also solution of (4). Using both symmetries in order to describe the
flow of system (4) in R3 it is enough to describe the flow of system
(4) on the quadrant

Q = {(x, y, z) ∈ R3 : y ≥ 0, z ≥ 0}.

2. The Poincaré compactification

It is know that a polynomial differential system in R3 can be extended
to a unique analytic differential system on the closed ball B of radius
1 centered at the origin of R3, called the Poincaré ball. More precisely,
the whole space R3 is identified with the interior of B, and the infinity
of R3 is identified with the boundary of B, i.e. with the 2–dimensional
sphere S2. For more details see [2] and [7], and the appendix of this
paper. The know technique for making such an extension is called the
Poincaré compactification and it allows to study the dynamics of a
polynomial differential system in a neighborhood of infinity. Poincaré
introduced this compactification for polynomial differential systems in
R2.

3. The global dynamics

Our main result is the description of the global dynamics of the
Kummer-Schwarz differential system (4) on the compactified quadrat
øQ of Q inside the Poincaré ball B, see Figure below. More precisely,
we describe all the α– and ω–limit sets of all the orbits of the Kummer-
Schwarz differential system (4). For the standard definitions of orbit,
α– and ω–limit sets of an orbit, and of the Poincaré compactification,
see for instance [3].
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Theorem 1.The following statements hold for the Kummer-Schwarz
differential system (4).

(a) On the quadrant Q the equilibrium points are all the points of the
x–axis, including its endpoints at infinity (X− at the end of the
negative x–axis and X+ at the end of the positive x–axis), and
additionally the endpoint Z+ at infinity of the positive z–axis, see
Figure first below.

(b) On the invariant boundary y = 0 of the quadrant øQ the orbits
are the half–straight lines parallel to the z–axis having α–limit an
equilibrium point of the x–axis and ω–limit the equilibrium point
Z+, see Figure below.

(c) On the invariant boundary z = 0 of the quadrant øQ the orbits are
the straight lines parallel to the x-axis having α–limit the equilibrium
point X− and ω-limit the equilibrium point X+, see Figure first
figure below.

(d) On the infinity §2 ∩Q the flow is qualitatively the one described in
Figure (the second figure below), i.e., without taken into account
the three equilibrium points Z+, X− and X+ at the infinity of the
quadrant Q all the other orbits have ω-limit at the equilibrium point
Z+, and α–limit either at X−, or at X+.

(e) The explicit solution (x(τ ), y(τ ), z(τ )) of the differential system (4)
such that (x(0), y(0), z(0)) = (x0, y0, z0) is

x(τ ) = x0 +
2y20
z0

(
1

(1− 3z0τ )
1/3

− 1

)
,

y(τ ) =
y0

(1− 3z0τ )
2/3

,

z(τ ) =
z0

1− 3z0τ
.

(5)

(f) Let γ be an orbit contained in the interior of the quadrant Q. Then
the α–limit of γ is the equilibrium point X− and its ω–limit is the
equilibrium point Z+.

(g) The differential system (4) has two independent first integralsH1 =
z2/y3 and H2 = x−2y2/z. The set {H1 = h1}∩{H2 = h2}∩Q
is an orbit γ with endpoints at X− and Z+.

The two independent first integrals H1 and H2 of statement (g) of
Theorem 1 are due to Goviender and Leach [4].
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4. Proof of Theorem 1

From the equations of the differential system (4) it follows immediately
that the x–axis is filled with equilibrium points, because x′ = y′ =
z′ = 0 when y = z = 0. Now we shall study the equilibriums points
at the infinity of the quadrant Q using the Poincaré compactification
of R3 described in the appendix.

We start studying the equilibrium points at the infinity located on the
local chart U1, i.e. in x > 0 and its boundary at infinity. Thus the
compactified differential system (4) in the local chart U1 is given by

ż1 = −2z31 + 2z1z2, ż2 = −2z21z2 + 3z22, ż3 = −2z21z3. (6)

At the infinity z3 = 0 of U1, i.e. in the points of the sphere S2 system
(6) reduces to

ż1 = 2z1(−z21 + z2), ż2 = z2(−2z21 + 3z2). (7)

So, the unique equilibrium point at the infinity of U1 is the origin
(0, 0, 0) of U1. Its linear part has all its eigenvalues equal to zero.
Therefore we need to study it using the technique of blow ups, see
for more details the Chapter 3 of [3]. Then, we obtain that the local
phase portrait of the equilibrium point (0, 0) of the differential system
(7) is qualitatively the one of Figure below. The equilibrium point
(0, 0, 0) of U1 corresponds to the endpoint X+ of the positive x–axis.
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4. Proof of Theorem 1
The local phase portrait at the equilibrium point (0, 0, 0) of V1 which
corresponds to the endpoint X− of the negative x–axis, is obtained
doing symmetry with respect to the center of the sphere S2 and revers-
ing the orientation of the orbits because the degree of the polynomial
differential system (4) is 2.

The flow of system (4) in the local chart U2 is given by the differential
system

ż1 = −2z1z2 + 2, ż2 = −2z21z2 + 3z22, ż3 = −2z2z3. (8)

So there are no equilibrium points at infinity in this local chart.

In the local chart U3 the system (4) becomes

ż1 = −3z1 + 2z22, ż2 = −z2, ż3 = −3z3. (9)

At the infinity of U3 the point (0, 0, 0) is the unique equilibrium point,
and its linear part has the eigenvalues −1 and −3 with multiplicity
two. Therefore, by the Hartman Theorem this equilibrium point is a
local attractor, and it corresponds to the endpoint Z+ of the positive
z–axis.

Proof of statement (b) of Theorem 1. From the differential system (4)
it follows that x′ = 0 and y′ = 0 when y = 0, so the plane y = 0 and
the straight lines {y = 0} ∩ {x = constant} are invariant by the flow
of system (4).

In short, on the invariant boundary y = 0 of the quadrant Q the
orbits are the half–straight lines parallel to the z–axis having α–limit
an equilibrium point of the x–axis and ω–limit the equilibrium point
Z+, see for more details the proof of statement (a).

Proof of statement (c) of Theorem 1. From the differential system (4)
we have that y′ = 0 and z′ = 0 when z = 0, so the plane z = 0 and
the straight lines {z = 0} ∩ {y = constant} are invariant by the flow
of system (4).

In summary, on the invariant boundary z = 0 of the quadrant Q the
orbits are the straight lines parallel to the x–axis having α–limit the
equilibrium point X− and ω–limit the equilibrium point X+, see again
for more details the proof of statement (a).

Proof of statement (d) of Theorem 1. From the fact that the infinity
S2 is invariant by the compactified flow of the polynomial differential
system (4), and the local phase portraits at the three equilibrium points
Z+, X− and X+ at the infinity of the quadrant Q studied in the proof
of statement (a), it follows that on the infinity S2 ∩ Q the flow is
qualitatively the one described in Figure below.

Proof of statement (e) of Theorem 1. Let (x(τ ), y(τ ), z(τ )) be the
solution of the differential system (4) such that (x(0), y(0), z(0)) =
(x0, y0, z0). From the differential equation z′ = 3z2 it follows
easily that z(τ ) = z0/(1 − 3z0τ ). Substituting we have y(τ ) =

y0/(1− 3z0τ )
2/3 and x(τ ) = x0 +

2y20
z0

(
1

(1− 3z0τ )
1/3

− 1

)
.

Proof of statement (f ) of Theorem 1. Since x′ = 2y2 > 0 and z′ =
3z2 > 0 in the interior of the quadrant øQ, for every orbit γ contained
in the interior of the quadrant Q we have that its α–limit has its x–
coordinate equal to −∞ and its z–coordinate equal to 0, and its
ω–limit has its x–coordinate equal to +∞ and its z–coordinate equal
to +∞. Taking into account either the solution of statement (e), or
the phase portrait on the boundary of the quadrant Q described in
the statements (b), (c) and (d) we get that the α–limit of γ is the
equilibrium point X− and its ω–limit is the equilibrium point Z+.

Proof of statement (g) of Theorem 1. LetH1 = z2/y3 andH2 = x−
2y2/z. Then, since

dHk

dτ
=

∂Hk

∂x
x′ +

∂Hk

∂y
y′ +

∂Hk

∂z
z′ = 0,

for k = 1, 2, we obtain that H1 and H2 are first integrals of the
differential system (4). Since there gradients are linearly independent
except at the points of z = 0 and y = 0 which have zero Lebesgue
measure, these two first integrals are independent.

It is not difficult to show that the set {H1 = h1}∩{H2 = h2}∩Q has
a unique component. Then, from either statement (e), or statement
(f) it follows that this set is formed by an orbit γ with endpoints at
X− and Z+.
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