
An empirical stability analysis of the Caledonian
Symmetric Four-Body model

A. Sivasankaran1, B.A. Steves2, W.L. Sweatman3 and M. Shoaib4

1Department of Applied Mathematics and Sciences, Khalifa University of Science Technology and Research, Sharjah, PO Box - 573, UAE, Anoop.Sivasankaran@kustar.ac.ae, 2 Glasgow Caledonian

University, Glasgow, UK, 3 Massey University at Albany, Auckland, New Zealand, 4 University of Hail, Saudi Arabia

Introduction

The Caledonian Symmetric Four Body Problem (CSFBP) is a restric-
ted four body system with a symmetrically reduced phase space. The
study of the dynamics and stability of four-body systems like CSFBP is
relevant in order to determine stable hierarchical arrangements which
will be capable of hosting exoplanetary systems. The CSFBP was de-
veloped by Steves and Roy in [4]. They have shown that similar to
the c2H stability criterion in the three-body problem, global stability
of the CSFBP system depends on a parameter called the Szebehely

constant C0. The Szebehely constant C0 = −
c2E
G2M 5 is a dimension-

less function of the total energy (E) and the magnitude of the angular
momentum of the system (c), where G is the gravitational constant,
and M is the total mass.

A fundamental limitation in the published studies of the CSFBP model
is that the existing numerical integration algorithms are inadequate to
study orbits with close encounters, as the numerical integration fails
due to collisional singularities. We have recently developed a global re-
gularization scheme that consists of adapted versions of several known
regularisation transformations such as the Levi-Civita-type coordinate
transformations; that together with a time transformation, removes
all the singularities due to colliding pairs of masses [1]. Using this
newly developed numerical algorithm, we numerically investigate the
relationship between the hierarchical stability of the system and the
analytical stability parameter characterised by the Szebehely constant
C0.

1. Regularisation Method and
Numerical Integration Scheme
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Figure 1 : The CSFBP configuration for t = 0 and t > 0.

The coplanar CSFBP involves two pairs of distinct masses moving in
coplanar, initially circular orbits, starting in a collinear arrangement
with past-future symmetry and dynamical symmetry (See Fig. 1).
The potential function in the Hamiltonian equations of motion of the
CSFBP contains singular terms. We have adapted the global regu-
larisation scheme of [5] to incorporate symmetries in the CSFBP. In
order to remove collisional singularities in the model, we applied a
Levi-Civita type transformation to all inter-body distance vectors.
We have derived the regularized Hamiltonian (Γ) from the original
Hamiltonian (H) using a time transformation function g which re-
scales the physical time t to the regularized time τ by

Γ = g(H − h0), (1)
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to derive the regularized Hamiltonian equations

dQi

dτ
=

∂Γ

∂Pi
,

dPi
dτ

= −
∂Γ

∂Qi
, (3)

where h0 is the initial value of H , Qi are the regularized position
coordinates and Pi are the regularized momenta coordinates.

The resulting regularized Hamiltonian equations of motion are free
from collisional singularities. Since the symbolic differentiation to de-
rive the gradient of Γ(Qi, Pi) produces a large number of additive
and multiplicative terms, we have adapted an algebraic optimisation
algorithm in numerically implementing the regularisation scheme. The
newly proposed regularisation algorithm is numerically and computati-
onally very efficient in handling all types of two-body close encounters
appearing in the CSFBP (See Figure 2)
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Figure 2 : Irregular numerical orbits starting with the same initial
conditions over the time period [0, 200] a)non-regularised b)

regularised.

2. Hierarchical stability
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Figure 3 : The four possible hierarchies in the CSFBP.

There are four different types of hierarchy states present in the CSFBP
(see Fig. 3); two double binaries (‘12’ and ‘14’) and two single binaries
(‘13’ and ‘24’). A particular hierarchy state is determined by compa-
ring their relative inter-body distances r12, r13, r14 and r24 and their
radius vectors r1 and r2. The CSFBP system is considered to be
hierarchically stable if it doesn’t change its initial hierarchical arrange-
ment.

According to [4], when the stability parameter C0 reaches a critical
value Ccrit, the phase space becomes topologically disconnected and
hierarchy changes are not possible after that. Szell et.al [2] numeri-
cally verified this, however numerical integrations using non-regularised
schemes ran into difficulties, whenever they came across orbits with
two-body close encounters and they had to avoid all types of collision
orbits completely from their analysis.

Type of changes C0 = 10 C0 = 20 C0 = 30 C0 = 40 C0 = 47

1213 DB1SB2 446 390 367 314 0
1214 DB1DB2 4 0 0 0 0
1224 DB1SB1 572 483 212 112 0
1312 SB2DB1 430 78 244 211 0
1314 SB2DB2 430 78 244 211 0
1324 SB2SB1 546 130 236 122 0
1412 DB2DB2 4 0 0 0 0
1413 DB2SB2 446 390 367 314 0
1424 DB2SB1 572 483 212 112 0
2412 SB1DB1 369 309 91 33 0
2413 SB1SB2 590 292 102 116 0
2414 SB1DB2 369 309 91 33 0

Total 4778 2942 2166 1578 0

Table 1 : Columns represent fixed C0 values while rows represent the
number of each type of hierarchy changes for µ = 1

We numerically investigate the hierarchical stability of the CSFBP
using the newly developed regularised codes for a wide range of Sze-
behely’s constant and initial conditions, recording the number and
type of hierarchical changes for a comprehensive set of CSFBP orbits,
including those which pass through close encounters (See Table 1 and
Fig. 4).

Different from [2], we also remove the bias in the initial configurations
by including the initial configurations for r1 < r2 enabling a start with
a 13 hierarchy and the initial configurations for the collinear arrange-
ment of bodies in order 1-4-2-3 or 4-1-3-2 enabling a start with a 14
hierarchy. Even with the presence of orbits with close encounters, the
global hierarchical features of the model remained unchanged. Beyond
the critical value of Szebehely constant Ccrit, hierarchy changes are
not possible for all time, for any values of mass ratio µ.
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Figure 4 : Critical values of Szebehely constant Ccrit as a function of
mass ratio µ

3. Empirical Stability Analysis
We empirically analyse the hierarchical stability of the CSFBP by
studying hierarchically stable regions in the phase space of the CSFBP
for any value of C0 < Ccrit using the newly developed regularised
codes (See Fig. 5). We are able to identify regions of phase space,
with initial conditions which lead to hierarchically stable orbits for a
finite integration time (empirical hierarchical stability). The regions of
‘empirical hierarchical stability’ are closely related to the regular and
chaotic behaviour of the phase space studied using fast chaos detec-
tion methods [3]. We also empirically define a region in the phase
space, in which a cluster of orbits remain hierarchically stable for a
given integration time that is taken to be of long time duration ( 106

in Fig. 5).
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Figure 5 : Empirical hierarchical stability of the model with µ = 1,
E0 = −7, C0 = 10, for integration time t = 106..

For the equal mass case, we have found islands of hierarchically stable
clusters in the phase space, in which families of periodic and quasi-
periodic orbits appears (See Fig. 6). It is also possible to reach
hierarchical stability for a given integration time; if we initially place
the orbits at a particular distance away from the origin (See Fig. 7).
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Figure 6 : Periodic and quasi-periodic orbits appearing in the
hierarchically stable blocks.
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Figure 7 : Global hierarchical stability of the model shown over an
integration time t = 108 for C0 = 10 and C0 = 40.

Conclusion

We numerically explored the hierarchical evolution of the orbits in the
CSFBP model using the newly proposed global regularisation scheme
for a wide range of initial conditions, recording the number and type
of hierarchical changes in the dynamics for a comprehensive set of
CSFBP orbits, including those which pass through close encounters.
It is confirmed that the hierarchical stability of the system solely de-
pended upon the Szebehely constant C0. We introduced an ‘empirical
hierarchical stability’ concept to study hierarchically stable regions for
C0 ≪ Ccrit, which is a ‘local’ hierarchical stability with respect to a
given numerical integration time. Regions of the hierarchically stable
and unstable orbits in the phase space of the CSFBP are determined
and their connection with the chaotic and regular regions of the phase
space is explored.
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