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Centers

We consider a vector field V (z) ∈ C∞(Ω, IR2), Ω open
connected subset of the real plane, and the system.

z ′ = V (z), z ∈ Ω.

We call φV (t, z) be the local flow defined by V in Ω.

A critical point O is a center if it has a punctured
neighbourhood covered with non-trivial cycles.

Figure : A central region of x ′ = y , y ′ = − sin x .
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Period annuli
We call central region the largest connected region
surrounding a center, covered with non-trivial cycles.

We call period annulus every connected region covered with
non-trivial cycles.
A period annulus may be contained in a central region, but
there exist period annuli not contained in any central region
(in red in next figure).

Figure : 3 central regions, 4 period annuli.
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Period function

Given a period annulus A, we define a period function
T : A→ IR by assigning to every point z ∈ A the minimum
positive period of the cycle γz passing through z .

T is a first integral of the system, i. e. it is constant on every
cycle.

If V (z) ∈ C∞(Ω, IR2), then T ∈ C∞(Ω, IR).
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Period function

Choose a transversal curve δ(s) of class C∞, parametrize A′s
cycles using s, write T as a function of s: T = T (s) = T (δ(s)).
Then T ∈ C∞.



Motivation

Question: why study T?

1. Stability: A cycle γ is stable if and only if T is constant in
a neighbourhood of γ.

2. BVP’s:

•) If T (s) is strictly increasing, then γ(0) = γ(τ) has at most
one solution for all τ .

•) If T (s) is strictly convex, then γ(0) = γ(τ) has at most
two solutions for all τ .

•) If T (n)(s) 6= 0, then γ(0) = γ(τ) has at most n solutions
for all τ .

3. Bifurcation: If T ′(z) 6= 0, then at most a limit cycle
bifurcates from γz .
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Upper bounds to the number of critical periods

•) 2nd order ODE’s:

Chow, Sanders (1986)
Wang (1987)
Gavrilov (1993)
Bonorino, Brietzke, Lukaszczyk, Taschetto (2005)
Li, Lu (2008)
Mañosas, Villadelprat (2009)
Chen, Huang (2011)

•) Hamiltonian systems other than ODE’s:

Chicone, Jacobs (1989)
Coppel, Gavrilov (1993)
Sabatini (2005)
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Upper bounds to the number of critical periods

•) Other systems:

Chicone, Dumortier (1988)
Chicone, Jacobs (1989)
Chicone, Dumortier (1993)
Francoise (1998)
Cima, Gasull, Mañosas (2000)
Garijo, Gasull, Jarque (2006)
Garijo, Gasull, Jarque (2010)
Gasull, Liu, Yang (2010)



Normalizers

Given a second a vector field W ∈ C∞(Ω, IR2), we denote by
[V ,W ] = ∂VW − ∂WV the Lie bracket of V and W .

W is said to be a normalizer of V if [V ,W ] = µV , for some
scalar function µ ∈ C∞. We call µ an N-cofactor.

If W is a transversal normalizer of V , then the local flow
φW (s, z) defined by W in Ω takes V -cycles into V -cycles:

φW (s, γz1) = γz2

Choosen an “initial cycle”γz∗ , where s = 0, one can
parametrize the other cycles by means of s. In this way, s
becomes a first integral of V .

T is a function of s, T = T (s) = T (φW (s, γz∗)).
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T ’s first derivative

If z = φW (s, z∗), we write

∂WT (z) =
d

ds
(T (φW (s, z∗))) = T ′(s).

T (z) is a first integral of V , as well all other derivatives

∂
(n)
W T (z) of T w. resp. to s.

Freire, Gasull, Guillamon (JDE 2004) proved:

Theorem
If V has a period annulus A, W is transversal to V , and
[V ,W ] = µV , then

∂WT (z) =

∫ T (z)

0
µ(φV (t, z))dt.

µ > 0 =⇒ T ′ > 0.
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Every section comes from a normalizer
For every transversal curve δ(s) there exists a normalizer W
of V and a point z ∈ A such that

δ(s) = φW (s, γz∗)

Figure : Every δ(s) is an orbit of a normalizer .

Hence, in principle (regardless of computational complexity)
T may be studied by means of normalizers w. resp. to every
transversal parametrization.
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How to find normalizers?

Methods used to find centers and period annuli often produce
first integrals (important exceptions: reversible systems).

If V has a first integral H, then, for every smooth
α : IR→ IR, the vector field associated to

x ′ = α(H)
Hx

H2
x + H2

y

, y ′ = α(H)
Hy

H2
x + H2

y

,

is a normalizer. In fact, Ḣ = α(H).

If V is the Hamiltonian system

x ′ = Hy , y ′ = −Hx ,

and α(r) = 1, then

µH =
(Hyy − Hxx)H2

x − 4HxyHxHy + (Hxx − Hyy )H2
y

|∇H|4
,
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How to find normalizers?

Freire, Gasull, Guillamon (JDE 2004) found a simpler
normalizer for Hamiltonian systems with separable variables,

x ′ = F ′(y), y ′ = −G ′(x).

Their normalizer is itself with separable variables,

x ′ =
G (x)

G ′(x)
, y ′ =

F (y)

F ′(y)
.

this produces an N-cofactor with separable variables,

µFGG =

(
G (x)

G ′(x)

)′
+

(
F (y)

F ′(y)

)′
− 1.
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Commutators

If [V ,W ] = 0 on a set X , we say that V and W commute on
X , or that they are commutators of each other.

We say that a period annulus A is isochronous if T is
constant on A.

Villarini (1992) and S. (1997) proved the following

Theorem
A period annulus A of V is isochronous if and only V has a
transversal commutator W .
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C-factors

Let m : IR→ IR, m 6= 0, be a smooth function such that
[mV ,W ] = 0. We call m a C-factor.

Lemma
If V has a period annulus A, then V has a C-factor on all of A.
(S., 2012)

Moreover, m is a C-factor if and only if

µ =
∂Wm
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C-factors
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Low-order µn’s

We write µ′ for ∂Wµ, µ′′ for ∂
(2)
W µ, etc.. One has:

µ2 = µ2 + µ′.

µ3 = µ3 + 3µµ′ + µ′′.

µ4 = µ4 + 6µ2µ′ + 4µµ′′ + 3µ′2 + µ′′′.

µ5 = µ5 + 10µ3µ′+ 10µ2µ′′+ 15µµ′2 + 5µµ′′′+ 10µ′µ′′+µ(4).



Low-order µn’s

We write µ′ for ∂Wµ, µ′′ for ∂
(2)
W µ, etc.. One has:

µ2 = µ2 + µ′.

µ3 = µ3 + 3µµ′ + µ′′.

µ4 = µ4 + 6µ2µ′ + 4µµ′′ + 3µ′2 + µ′′′.

µ5 = µ5 + 10µ3µ′+ 10µ2µ′′+ 15µµ′2 + 5µµ′′′+ 10µ′µ′′+µ(4).



Low-order µn’s

We write µ′ for ∂Wµ, µ′′ for ∂
(2)
W µ, etc.. One has:

µ2 = µ2 + µ′.

µ3 = µ3 + 3µµ′ + µ′′.

µ4 = µ4 + 6µ2µ′ + 4µµ′′ + 3µ′2 + µ′′′.

µ5 = µ5 + 10µ3µ′+ 10µ2µ′′+ 15µµ′2 + 5µµ′′′+ 10µ′µ′′+µ(4).



Low-order µn’s

We write µ′ for ∂Wµ, µ′′ for ∂
(2)
W µ, etc.. One has:

µ2 = µ2 + µ′.

µ3 = µ3 + 3µµ′ + µ′′.

µ4 = µ4 + 6µ2µ′ + 4µµ′′ + 3µ′2 + µ′′′.

µ5 = µ5 + 10µ3µ′+ 10µ2µ′′+ 15µµ′2 + 5µµ′′′+ 10µ′µ′′+µ(4).



Low-order µn’s

We write µ′ for ∂Wµ, µ′′ for ∂
(2)
W µ, etc.. One has:

µ2 = µ2 + µ′.

µ3 = µ3 + 3µµ′ + µ′′.

µ4 = µ4 + 6µ2µ′ + 4µµ′′ + 3µ′2 + µ′′′.

µ5 = µ5 + 10µ3µ′+ 10µ2µ′′+ 15µµ′2 + 5µµ′′′+ 10µ′µ′′+µ(4).



C-factors vs N-cofactors

∂
(n−1)
W µ > 0 6=⇒ ∂

(n)
W T > 0

∂
(n)
W m > 0 =⇒ ∂

(n)
W T > 0



C-factors vs N-cofactors

∂
(n−1)
W µ > 0 6=⇒ ∂

(n)
W T > 0

∂
(n)
W m > 0 =⇒ ∂

(n)
W T > 0



C-factors vs N-cofactors

∂
(n−1)
W µ > 0 6=⇒ ∂

(n)
W T > 0

∂
(n)
W m > 0 =⇒ ∂

(n)
W T > 0



Convexity

We say that T is W -convex if T (φW (s, z)) is convex.

∂Wµ > 0 =⇒ T convex.

Remark: T may be W -convex, but not W̃ -convex, for a
different normalizer W̃ .
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Jacobian maps and annuli

Let Ψ = (P,Q) ∈ C∞(Ω, IR2), with jacobian matrix JΨ. If
δ = det JΨ 6= 0, we say that it is a jacobian map.

If Ψ = (P,Q) is a jacobian map, then the Hamiltonian system

with H = P2+Q2

2 as hamiltonian,

x ′ = PPy + QQy , y ′ = −PPx − QQx ,

has a center at every extremum of H. It can also have
non-central period annuli.

A normalizer is the system Wδ

x ′ =
PQy − QPy

δ
, y ′ =

−PQx + QPx

δ
.

with C-factor and N-cofactor given by

ms =
1

δ
, µs = −∂Wδ

δ

δ
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Systems with separable variables

If F (0) = 0, G (0) = 0, yF ′(y) > 0 for x 6= 0, xG ′(x) > 0 for
y 6= 0, F ′′(0) > 0, G ′′(0) > 0, the system

x ′ = F ′(y), y ′ = −G ′(x).

comes from the jacobian map Ψ(x , y) = (P(x),Q(y))
= (s(x)

√
2G (x), s(y)

√
2F (y)); s(t) sign function. It has a

center at the origin O

Its jacobian determinant is

δ(x , y) = P ′(x)Q ′(y) =
1

2

s(x)G ′(x)√
G (x)

s(y)F ′(y)√
F (y)
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Systems with separable variables

From the determinant we get the C-factor. It has separable
variables.
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Systems with separable variables

Theorem
The period function of the system

x ′ = F ′(y), y ′ = −G ′(x)

satisfies

∂
(n)
Wδ

T (z) =

∫ T (z)

0

∂
(n)
Wδ

ms(φVΨ
(t, z))

ms(φVΨ
(t, z))

dt,

where the integration is performed along the cycle φVΨ
(t, z)

starting at z. (S. 2012)



Systems with separable variables

In order to study convexity, one can consider µs2, which is the
sum of a mixed term (both x and y) plus two pure terms
(only x or only y):

µs2 = 4

[
1 + 2

GG ′′

G ′2
· FF

′′

F ′2
+

+
3G 2G ′′2 − 3GG ′2G ′′ − G 2G ′G ′′′

G ′4

+
3F 2F ′′2 − 3FF ′2F ′′ − F 2F ′F ′′′

F ′4

]
.
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2nd order ODE’s

In the case of 2nd order ODE’s, i. e. if F (y) = y2

2 , µs2

reduces to the following form

µs2 =
G ′4 − 8G ′2GG ′′ + 12G 2G ′′2 − 4G 2G ′′′G ′

G ′4
.
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Systems with separable variables

An alternative choice: use the normalizer

x ′ =
Hx

H2
x + H2

y

=
G ′

G ′2 + F ′2
, y ′ =

Hy

H2
x + H2

y

=
F ′

G ′2 + F ′2
.

Its N-cofactor is

µH =
(F ′′ − G ′′)(G ′2 − F ′2)

(G ′2 + F ′2)2
,

which does not separate variables, but does not require the
non-degeneracy assumption .
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