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A Lattes map on P is, by definition, a holomorphic map f on PX
such that the following diagram commutes:

Ck */> Ck

1

Ek *L> Ek

Jo

pk . pk
where E¥ is a complex torus of dimension k, / is an affine map on

C* which induces an affine map L on EX, and V¥ is a holomorphic
map from E¥ onto PX.
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Let g be a holomorphic map on P! and f be a holomorphic map
on P2. If there exists a holomorphic map 7 : P x P! — P2 such
that fom =mo(g,g), then we call f the square map of g.
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Let g be a holomorphic map on P! and f be a holomorphic map
on P2. If there exists a holomorphic map 7 : P x P! — P2 such
that fom =mo(g,g), then we call f the square map of g.

An algebraic web is given by a reduced curve C C P2, where P? is
the dual projective plane consisting of lines in P?. The web is
invariant for a holomorphic map f on P? if every line in P2
belonging to C is mapped to another such line.
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Let g be a holomorphic map on P! and f be a holomorphic map
on P2. If there exists a holomorphic map 7 : P x P! — P2 such
that fom =mo(g,g), then we call f the square map of g.

An algebraic web is given by a reduced curve C C P2, where P? is
the dual projective plane consisting of lines in P?. The web is
invariant for a holomorphic map f on P? if every line in P2
belonging to C is mapped to another such line.

Theorem (Main Theorem)

If f is a Lattés map on P2, then either f or a suitable iteration of f
is one of the following:

(i) a square map of a Lattés map on P!;

(ii) a holomorphic map preserving an algebraic web associated to a
smooth cubic.
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Complex crystallographic group

Let E(n) be the complex motion group acting on C"”. A complex
crystallographic group is, by definition, a discrete subgroup of E(n)
with compact quotient. Let U(n) be the unitary group of size n.
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Complex crystallographic group

Let E(n) be the complex motion group acting on C"”. A complex
crystallographic group is, by definition, a discrete subgroup of E(n)
with compact quotient. Let U(n) be the unitary group of size n.

For Ac U(2) and r € C?, let (A|r) € E(2) denote the
transformation: z — Az + r. For a two dimensional complex
crystallographic group ', R := {r; (1|r) €T} and

G :={A; (A|r) €T} are called the lattice and the point group of
I, respectively. If ' has the representation {(A|r); A€ G, r € R},
then I is called the semidirect product G x R of the lattice and the
point group.
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Complex crystallographic group

Let E(n) be the complex motion group acting on C"”. A complex
crystallographic group is, by definition, a discrete subgroup of E(n)
with compact quotient. Let U(n) be the unitary group of size n.

For Ac U(2) and r € C?, let (A|r) € E(2) denote the
transformation: z — Az + r. For a two dimensional complex
crystallographic group ', R := {r; (1|r) €T} and

G :={A; (A|r) €T} are called the lattice and the point group of
I, respectively. If ' has the representation {(A|r); A€ G, r € R},
then I is called the semidirect product G x R of the lattice and the
point group.

Let G(m, p,2) C U(2) denote the group generated by

1 0 6P _ 27i/m
(1 )’(0‘1 >and< 1>,9—e .
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Classification of W

Theorem (Corollary of a theorem of Kaneko-Tokunaga-Yoshida)

If (N, G) is a pair such that E? = C2/A\ and E?/G = P?, then, up
to conjugation, it is one of the following

N=L%(r), G=G:=G(21,2),
A= L%(¢), G =G :=G(3,1,2),
A = L2(i), G = G3:=G(4,1,2),
A= L%(C), G =G4 :=G(6,1,2),
A= L2(), G:G5::G(4,2,2)><21;H<1),

A=Ng = L(T)< _11 ) +L(T)< C; ) G = Gs = G(3,3,2).
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Affine maps

Write L = (A|r), where

(22 ()

with a,b,c,d,e,f € C. Set ¢y = Wor.
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Affine maps

Write L = (A|r), where
a b e
i=(2a) (7))
with a,b,c,d,e,f € C. Set ¢y = Wor.
For z € C2 and )\ € A we then have

po(Az+r)=Ffop(z)=Fforp(z+ ) =1o(Alz+ ) +r).

This shows that
AN C A.
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Affine maps

Write L = (A|r), where

a b e
=(26) ()
with a,b,c,d,e,f € C. Set ¢y = Wor.

For z € C2 and )\ € A we then have
po(Az+r)=Ffop(z)=Fforp(z+ ) =1o(Alz+ ) +r).

This shows that
AN C A.

Since L carries a small domain of volume V to a domain of volume
|detA|?V, it follows that the map L has degree |detA|?. Let df be
the algebraic degree of f and the (topological) degree of f is d?.
Since foW = Wo L, we get d? = |detA|?, and thus

|detA| = df.
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Admissible affine maps

By definition, an affine map L on E? = C?/A induces a Lattes map
f on P2 = E2/G if and only if

(%) for any g € G, there exists h€ G s.it. Log=hoL mod A.
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Admissible affine maps

By definition, an affine map L on E? = C?/A induces a Lattes map
f on P2 = E2/G if and only if

(%) for any g € G, there exists h€ G s.it. Log=hoL mod A.

For L= (A|r), g = (B|r') and h = (C|r"), we have
Log=(ABJAr +r) and hol = (CA|Cr+r").
Therefore Lo g = ho L mod A is equivalent to
AB = CA and Ar'+r=Cr+r" mod A.

For the proof of the Main Theorem, we make use of the following
two simple yet important observations:

1. condition (x) is satisfied if and only if it is satisfied for all
generators of G;

2. if g=(B|r') and h = (C|r") satisfy Lo g = ho L mod A, then
B and C are of the same order.
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SEICRUES

Lemma

Let L = (A|r) be an affine map on E? which induces a Lattés map
on P2 in the case (A, G;), i = 1,2,3,4,5. If A is of the form

(a 6) 7 (5 a)’

then L induces a map on P! x P! of the form (g,g), where g is a
Lattés map on PL.
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SEICRUES

Lemma

Let L = (A|r) be an affine map on E? which induces a Lattés map
on P2 in the case (A, G;), i = 1,2,3,4,5. If A is of the form

(a 6) 7 (5 a)’

then L induces a map on P! x P! of the form (g,g), where g is a
Lattés map on PL.

By the above lemma, we have the following commutative diagram

E2 s plxpl T2 p2

| e

E? s plx Pl p2
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Maps preserving an algebraic web

Let g be a holomorphic map on PL. Let C be a smooth conic in
P2, which we identify with P1. For a point P € P2, let /; and k be
the tangent lines to C which pass through P and let Q; and @, be
the points of contact. Let /] and /5 be the tangent lines to C at
g(Q1) and g(Qz) and define f(P) to be the intersection point of /
and /5. It is easy to see that f preserves the algebraic web
associated to the dual curve of C.
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Maps preserving an algebraic web

Let g be a holomorphic map on PL. Let C be a smooth conic in
P2, which we identify with P1. For a point P € P2, let /; and k be
the tangent lines to C which pass through P and let Q; and @, be
the points of contact. Let /] and /5 be the tangent lines to C at
g(Q1) and g(Qz) and define f(P) to be the intersection point of /
and /5. It is easy to see that f preserves the algebraic web
associated to the dual curve of C.

If L= (A|r) induces a Lattés map in the case (A, Gg) then we have
that either L, L2, 3 or L® is of the form (/, 1), where
I x — ax + e, with 3e = 0 mod L(7), is an affine map on E.

Let  : E — P2 be an embedding of E into P2 and denote the
image by C, which is a smooth cubic. Since 3e =0 mod L(7), the
map / preserves collinearity. Thus (/,/) induces a holomorphic map
on P2, through ¢ : E x E — P2, which preserves the algebraic web
associated to C. Here ¢ maps (x,y) € E X E to the line joining

n(x) and n(y).



Associated Orbifold

Let X be a complex manifold and denote by #(X) the space of
irreducible analytic subvarieties of codimension 1 in X. Let r be a
function defined on H(X) with values in N, which is equal to 1
outside a locally finite family of analytic subvarieties of X. We call
the pair (X, r) an orbifold. We say that the orbifold (X, r) is
parabolic, if there exists a ramified covering f : X — X such that

r(f(H)) = m¢(H) - r(H)

for every H € H(X), where m¢(H) is the multiplicity of f along H
(i.e. the multiplicity of f at a generic point of H). (Note that
mf(H) =1ifH ¢ Cf)
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Associated Orbifold

Let X be a complex manifold and denote by #(X) the space of
irreducible analytic subvarieties of codimension 1 in X. Let r be a
function defined on H(X) with values in N, which is equal to 1
outside a locally finite family of analytic subvarieties of X. We call
the pair (X, r) an orbifold. We say that the orbifold (X, r) is
parabolic, if there exists a ramified covering f : X — X such that

r(f(H)) = m¢(H) - r(H)

for every H € H(X), where m¢(H) is the multiplicity of f along H
(i.e. the multiplicity of f at a generic point of H). (Note that
mf(H) =1ifH ¢ Cf)

If f is a Lattés map on PX, then there exists a parabolic orbifold
(P*, r) associated with f.
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An example

The following is an example in the case (L2(i), G(2,1,2)).
The affine map is given by L = (A|r), where

A:(i _11>,r5e<1> mod L2(i), e= —e mod L(i).

To obtain f, we need to express p(u+ v) + p(u — v) and
o(u+ v)p(u—v) in terms of p(u) + p(v) and p(u)p(v). Here p
is the Weierstrass p-function associated to L(i). From

2(p(u)p(v) = 1) (p(u) + p(v))

@(U“‘V)"‘@(”_V): (p(u)—p(v))z )
and
L (e)e() + 17
plutvIels =) =y = o)
we get

frilx:y:z] — [2x(y —2) : (y + 2)? : x* — 4yz].



Thank You!

Happy Birthday, Jaume!
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