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Introduction

There is a long time that scientists have been curious about the inte-
raction between portions of a population with particular characteris-
tics, e.g. prey and predator interaction. Moreover, the means of how
diseases spread has stimulated the interest mainly within researchers
of the biological field.

In addition, the application of mathematical tools in different areas
of sciences has been frequent and has had a great impact on the
scientific and/or experimental conclusions. For example, Lotka (1925)
and Volterra (1926) described independently the dynamics present in
biological interactions between two species using ordinary differential
equations (ODE).

Besides, continuous models composed by ODE have formed a large
part of the traditional mathematical epidemiology literature, mainly
because mathematicians have been attracted by applying the ODE’s
tools, such as their qualitative theory, to the study of infectious di-
seases in the attempt of using mathematics to contribute positively
to the science field and because the mathematical models become
indispensable to inform decision-making.

In the present poster, we consider the system of first-order ODE

ẋ = −bxy −mx + cy +mk,
ẏ = bxy − (m + c)y,

(1)

with bm ̸= 0, where x and y represent, respectively, the portion of the
population that has been susceptible to the infection and those who
have already been infected.

System (1) is a particular case of the class of classical systems known
as susceptible-infected-susceptible (SIS) models, introduced
by Kermack and McKendrick [2] and studied by Brauer [1], who has
assumed that recovery from the nonfatal infective disease does
not yield immunity. In system (1),

• k is the population size (susceptible people plus infected ones);

•mk is the constant number of births;

•m is the proportional death rate;

• b is the infectivity coefficient of the typical Lotka-Volterra interac-
tion term; and

• c is the recovery coefficient.

As system (1) is assumed to be nonfatal, the standard term which
removes dead infected people −ay in [1] is omitted. As usual in the
literature, all the critical points of system (1) will henceforth
be called (endemic) steady states (e.g. see [8]).

Much has been studied on SIS models.

• Studies on the local and global stability: C. Vargas-De-Léon in [6,7]
(construction of Lyapunov functions);

• Studies on the integrability: Nucci and Leach [5] (using the Pain-
levé test) and Llibre and Valls [3] (they have shown the explicit
expression of its first integral using the Darboux integrability).

It is clear that the above studies contribute to understand the behavior
of the solutions of system (1). However, another approach would be
the possibility of drawing its global phase portraits.

Motivated by this idea, the purpose here was to classify all the
topological classes of the global phase portraits of system
(1) using tools from the qualitative theory of the ODE.

The main result is the following:

Theorem 1: The phase portrait on the Poincaré disc of system
(1) is topologically equivalent to one of the two phase portraits
shown in Figure 1, modulo reversibility.
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Figure 1: Phase portraits in the Poincaré disc of system (1)

1. Analysis of the system

Finite singular points

Provided that b ̸= 0, system (1) has only two finite singular points:
p = ((c+m)/b, (−c+ bk−m)/b), usually known as endemic steady
state, and q = (k, 0), usually known as disease-free steady state. In
addition, both finite singular points p and q are the same if bk = c.

First, we start with the analysis of the endemic steady state p. Trans-
lating the singular point p to the origin in system (1), we obtain

ẋ = −bkx + cx−my − bxy,
ẏ = (−c + bk −m)x + bxy,

(2)

which is equivalent to (1). The Jacobian matrix of (2) is given by

J(x, y) =

(
c− bk − by −m− bx

−c + bk −m + by bx

)
,

which implies that

δ = δ(0, 0) = (bk − c−m)m and τ = τ (0, 0) = −bk + c.

If (bk − c − m)m < 0, then p is a saddle point. On the other
hand, if (bk − c − m)m > 0, then p is a node point, because
τ2 − 4δ = (c− bk + 2m)2 ≥ 0.

In the case that (bk− c−m)m = 0, then p is degenerate. Indeed, it
is the case that both finite singular points are the same, i.e. p = q =
(k, 0). Here, system (2) becomes

ẋ = −mx−my − bxy,
ẏ = bxy,

(3)

whose Jacobian matrix at (0, 0) is

J(0, 0) =

(
−m −m
0 0

)
,

so that p is a semi-hyperbolic point. By a linear change of coordinates,
we can apply Theorem 2.19 of [4] and conclude that p is a saddle-node
point.

The disease-free steady state q can be similarly studied. Thus, we
obtain the following:

Proposition 1: Consider system (1) with bm ̸= 0 and its two
finite steady states p and q. Then:

1. If either m > 0 and m > bk − c, or m < 0 and m < bk − c,
then p is a saddle and q is a node;

2. If either m > 0 and m < bk − c, or m < 0 and m > bk − c,
then p is a node and q is a saddle;

3. If m = bk − c, then p = q is a semi-hyperbolic saddle-node.

Infinite singular points

Having classified all the finite singular points, we apply the Poincaré
compactification to study the infinite singularities.

In the local chart U1, where x = 1/v and y = u/v, we have:

u̇ = u(b + bu− cv − cuv − kmv2),

v̇ = v(bu +mv − cuv − kmv2),
(4)

whose singular points are (0, 0) and (−1, 0), which are a saddle-node
of type SN1 (by Theorem 2.19 of [4]) and a node, respectively.

In the local chart U2, where x = u/v and y = 1/v, the system

u̇ = −bu− bu2 + cv + cuv + kmv2,
v̇ = v(−bu + cv +mv)

(5)

has two singular points (0, 0) and (−1, 0). The latter one is a node
and is the same as (−1, 0) ∈ U1, while the former one is a saddle-node
of type SN1.

We have just proved the following:

Proposition 2: The infinite singular points of system (1) are the
origin of charts U1, V1, U2 and V2, which are saddle-node points
of type SN1, and (−1, 0), belonging to each of the charts U1 and
U2, which is a node point.

The existence of invariant straight lines

Knowing the local behavior around each finite and infinite singular
points, another useful tool to describe the phase portraits of differential
systems is the existence of invariant curves. The next result shows
system (1) has at least three invariant straight lines.

Proposition 3: Let bm ̸= 0. System (1) has at least three
invariant straight lines given by f1(x, y) = y and f2(x, y) = k −
x− y, and additionally f3(x, y) = k − x, if c = bk.

Proof: We can find K1(x, y) = bx − m − c, K2(x, y) = −m and
K3(x, y) = −m−by as the cofactors of f1(x, y), f2(x, y) and f3(x, y)
(if c = bk), respectively.

2. Main result

From Propositions 1 and 2 we get all the information about the local
behavior of finite and infinite singular points, respectively. Using the
continuity of solutions and primary definitions and results of ODE
and the existence of invariant straight lines of system (1) stated by
Proposition 3, its global phase portraits can be easily drawn.

Essentially, we have only two cases. The finite steady state q is the
intersection of the invariant curves f1(x, y) = f2(x, y) = 0, and the
other finite steady state p lies on the curve f2(x, y) = 0. Firstly, we
note that the four infinite singular points continue to be the same
points no matter what conditions are being considered.

Case 1 According to items (1) and (2) of Proposition 1, p (respecti-
vely, q) is a saddle (respectively, a node) the one way and the other a
node (respectively, a saddle). The subtle difference here is the position
of point p. While q remains on the line {y = 0}, p is in the lower
part of the Poincaré disc the one way and the other in the upper part.
The phase portrait of both subcases above is topologically equivalent
to the one which is shown in Figure 1(a).

Case 2 Item (3) of Proposition 1 assumes the existence of only one
finite singular point, p = q. Here, when m = bk − c, both p and q
become only one degenerate singularity which bifurcates into a saddle-
node point. Again, no changes are applied to the infinite singular
points. The phase portrait of this case is topologically equivalent to
the one which is shown in Figure 1(b).

Finally, Theorem 1 has been proved.

3. Conclusions and discussions

We have proved the existence of only two classes of global phase
portraits of the quadratic system (1). In the qualitative theory of
ODE it is quite important to know the global behavior of solutions of
systems and, in general, this is not an easy task.

In the case represented by Figure 1(a), it is clear that while the
steady state q characterizes the presence of only susceptible
individuals, p indicates the mutual presence of susceptible
and infected people. Besides, as q is an asymptotically stable node,
the disease seems to be controlled and the whole population tends to
be healthy but susceptible to be infected again. As p is an unstable
saddle steady state, it suggests that there is no harmony between the
number of susceptible people and infected ones, although some of the
solutions tend to q, indicating the control of the disease.

In case of Figure 1(b), all the solutions tend to q (regarding that
x, y > 0), i.e. if m = bk− c, the disease is supposed to be controlled
and the whole population is inclined to be healthy but susceptible to
the reinfection.
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