Distributional chaos for linear operators

Alfred Peris Institut Universitari de Matemàtica Pura i Aplicada Universitat Politècnica de València

NEW TRENDS IN DYNAMICAL SYSTEMS, 1-5 October 2012, Salou Conference on the occasion of Jaume Llibre's 60th birthday

∃ ⊳

Theorem (G. D. Birkhoff, 1929)

There is an entire function $f : \mathbb{C} \to \mathbb{C}$ such that, for any entire function $g : \mathbb{C} \to \mathbb{C}$ and for every $a \in \mathbb{C} \setminus \{0\}$, there is a sequence $(n_k)_k$ in \mathbb{N} such that

 $\lim_{k} f(z + an_k) = g(z) \text{ uniformly on compact sets of } \mathbb{C}.$

< ∃ →

Birkhoff's result, in terms of dynamics

- $\mathcal{H}(\mathbb{C}) := \{ f : \mathbb{C} \to \mathbb{C} ; f \text{ is entire} \}.$
- Endow H(C) with the compact-open topology τ₀ (topology of uniform convergence on compact sets of C).

• Consider the (continuous and linear!) map

$$T_a: \mathcal{H}(\mathbb{C}) \to \mathcal{H}(\mathbb{C}), \ f(z) \mapsto f(z+a).$$

• Then there are $f \in \mathcal{H}(\mathbb{C})$ so that the orbit under T_1 :

$$Orb(T_a, f) := \{f, T_a f, T_a^2 f, \dots\}$$

-∢ ≣ ▶

is dense in $\mathcal{H}(\mathbb{C})$.

Framework and definitions

From now on X will be a separable Fréchet space and T : X → X an operator.

• Given $x \in X$, its **orbit** under an operator $T : X \to X$ is:

$$Orb(T, x) := \{x, Tx, T^2x, ...\}.$$

• An operator $T : X \to X$ on a Fréchet space X is hypercyclic if there are $x \in X$ such that $\overline{Orb(T, x)} = X$.

∃ >

Rolewicz, 1969

No finite dimensional space admits a hypercyclic operator

Birkhoff transitivity theorem, 1920

The following are equivalent:

- a) T is hypercyclic;
- b) T is topologically transitive:

 $\forall U, V \subset X$ open and non-empty, $\exists n \in \mathbb{N} : T^{n}(U) \cap V \neq \emptyset$.

★ 문 ► ★ 문 ► ...

э

Rolewicz, 1969

No finite dimensional space admits a hypercyclic operator

Birkhoff transitivity theorem, 1920

The following are equivalent:

- a) T is hypercyclic;
- b) T is topologically transitive:

 $\forall U, V \subset X$ open and non-empty, $\exists n \in \mathbb{N} : T^{n}(U) \cap V \neq \emptyset$.

-∢ ⊒ ▶

Li-Yorke and distributional chaos

Definitions

- (Li-Yorke, 1975) An uncountable subset S ⊂ X of a metric space (X, d) is called a scrambled set for a dynamical system f : X → X if for any x, y ∈ S with x ≠ y we have lim inf_n d(fⁿ(x), fⁿ(y)) = 0 and lim sup_n d(fⁿ(x), fⁿ(y)) > 0. f is called Li-Yorke chaotic if it admits an scrambled set.
- (Schweizer-Smítal, 1994) A dynamical system $f : X \to X$ with a scrambled set S is **distributionally chaotic** on S if, additionally, there is $\delta > 0$ so that for each $\varepsilon > 0$ and each pair $x, y \in S$ of distinct points we have

(1)
$$\liminf_{n} \frac{\operatorname{card}(\{k \le n : d(f^k(x), f^k(y)) < \delta\})}{n} = 0$$

and

(2)
$$\limsup_{n} \frac{\operatorname{card}(\{k \le n : d(f^k(x), f^k(y)) < \varepsilon\})}{n} = 1.$$

< ∃ →

Li-Yorke and distributional chaos

Definitions

- (Li-Yorke, 1975) An uncountable subset S ⊂ X of a metric space (X, d) is called a scrambled set for a dynamical system f : X → X if for any x, y ∈ S with x ≠ y we have lim inf_n d(fⁿ(x), fⁿ(y)) = 0 and lim sup_n d(fⁿ(x), fⁿ(y)) > 0. f is called Li-Yorke chaotic if it admits an scrambled set.
- (Schweizer-Smítal, 1994) A dynamical system $f : X \to X$ with a scrambled set S is **distributionally chaotic** on S if, additionally, there is $\delta > 0$ so that for each $\varepsilon > 0$ and each pair $x, y \in S$ of distinct points we have

(1)
$$\liminf_{n} \frac{\operatorname{card}(\{k \le n : d(f^{k}(x), f^{k}(y)) < \delta\})}{n} = 0$$

and

(2)
$$\limsup_{n} \frac{\operatorname{card}(\{k \leq n : d(f^{k}(x), f^{k}(y)) < \varepsilon\})}{n} = 1.$$

- ∢ ⊒ →

• We recall that the upper density $\overline{\text{dens}}(A)$ of a set $A \subset \mathbb{N}$ is defined by:

$$\overline{\mathrm{dens}}(A) = \limsup_{n} \frac{\mathrm{card}(A \cap \{1, \dots, n\})}{n}$$

Equivalent definition of distributional chaos: A dynamical system
 f : *X* → *X* with a scrambled set *S* is distributionally chaotic on *S* if there
 is δ > 0 so that for each ε > 0 and each pair x, y ∈ S of distinct points we
 have

$$(1) \quad \overline{\mathsf{dens}}(\{k \in \mathbb{N} \ : \ d(f^k(x), f^k(y)) \geq \delta\}) = 1$$

and

(2)
$$\overline{\operatorname{dens}}(\{k \in \mathbb{N} ; d(f^k(x), f^k(y)) < \varepsilon\}) = 1.$$

< ∃ →

• We recall that the upper density $\overline{\text{dens}}(A)$ of a set $A \subset \mathbb{N}$ is defined by:

$$\overline{\mathsf{dens}}(A) = \limsup_{n} \frac{\mathsf{card}(A \cap \{1, \dots, n\})}{n}$$

Equivalent definition of distributional chaos: A dynamical system
 f : *X* → *X* with a scrambled set *S* is distributionally chaotic on *S* if there
 is δ > 0 so that for each ε > 0 and each pair x, y ∈ S of distinct points we
 have

$$(1) \quad \overline{\mathsf{dens}}(\{k \in \mathbb{N} \ : \ d(f^k(x), f^k(y)) \geq \delta\}) = 1$$

and

(2)
$$\overline{\operatorname{dens}}(\{k \in \mathbb{N} ; d(f^k(x), f^k(y)) < \varepsilon\}) = 1.$$

< ∃ >

Given a sequence v = (v_n)_n of positive weights, we will consider the weighted ℓ^p-space (1 ≤ p < ∞):

$$X = \ell^{p}(\mathbf{v}) := \{ x \in \mathbb{K}^{\mathbb{N}} : \| x \| := \left(\sum_{j=1}^{\infty} | x_{j} |^{p} | \mathbf{v}_{j} \right)^{1/p} < \infty \}$$

• The backward shift $T = B : \ell^p(v) \to \ell^p(v)$

$$B(x_1, x_2, x_3, \ldots) := (x_2, x_3, x_4, \ldots)$$

- ∢ ≣ ▶

э

is well-defined (equivalently, continuous) iff $\sup_{n} \frac{v_n}{v_{n+1}} < \infty$.

Given a sequence v = (v_n)_n of positive weights, we will consider the weighted ℓ^p-space (1 ≤ p < ∞):

$$X = \ell^{p}(\mathbf{v}) := \{x \in \mathbb{K}^{\mathbb{N}} : \parallel x \parallel := \left(\sum_{j=1}^{\infty} \mid x_{j} \mid^{p} v_{j}\right)^{1/p} < \infty\}$$

• The backward shift $T = B : \ell^p(v) \to \ell^p(v)$

$$B(x_1, x_2, x_3, \ldots) := (x_2, x_3, x_4, \ldots)$$

- ∢ ⊒ ▶

is well-defined (equivalently, continuous) iff $\sup_n \frac{v_n}{v_{n+1}} < \infty$.

The backward shift B is hypercyclic on $X = \ell^{p}(v)$ if and only if $\liminf_{k} v_{k} = 0$.

(Godefroy. Shapiro, 1991)

The backward shift B is Devaney chaotic on $X = \ell^p(v)$ if and only if $\sum_{i \in \mathbb{N}} v_i < \infty$.

(Martínez-Giménez, Oprocha, Peris, 2009)

If the backward shift B is Devaney chaotic on $X = \ell^{p}(v)$, then it is distributionally chaotic.

Martínez-Giménez, Oprocha, Peris)

Let $v_j := 1/k$, $n_k \leq j < n_{k+1}$, where $n_k := (k!)^3$, $k \in \mathbb{N}$. Then $\mathcal{T} := B$ is hypercyclic on $X = \ell^p(v)$, but it is not distributionally chaotic.

・ロン ・四 と ・ ヨ と ・

The backward shift B is hypercyclic on $X = \ell^{p}(v)$ if and only if $\liminf_{k} v_{k} = 0$.

(Godefroy. Shapiro, 1991)

The backward shift B is Devaney chaotic on $X = \ell^p(v)$ if and only if $\sum_{i \in \mathbb{N}} v_i < \infty$.

(Martínez-Giménez, Oprocha, Peris, 2009)

If the backward shift B is Devaney chaotic on $X = \ell^{p}(v)$, then it is distributionally chaotic.

(Martínez-Giménez, Oprocha, Peris)

Let $v_j := 1/k$, $n_k \leq j < n_{k+1}$, where $n_k := (k!)^3$, $k \in \mathbb{N}$. Then T := B is hypercyclic on $X = \ell^p(v)$, but it is not distributionally chaotic.

(4 回) (4 回) (4 回)

The backward shift B is hypercyclic on $X = \ell^p(v)$ if and only if $\liminf_k v_k = 0$.

(Godefroy. Shapiro, 1991)

The backward shift B is Devaney chaotic on $X = \ell^p(v)$ if and only if $\sum_{i \in \mathbb{N}} v_i < \infty$.

(Martínez-Giménez, Oprocha, Peris, 2009)

If the backward shift B is Devaney chaotic on $X = \ell^p(v)$, then it is distributionally chaotic.

(Martínez-Giménez, Oprocha, Peris)

Let $v_j := 1/k$, $n_k \leq j < n_{k+1}$, where $n_k := (k!)^3$, $k \in \mathbb{N}$. Then T := B is hypercyclic on $X = \ell^p(v)$, but it is not distributionally chaotic.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

The backward shift B is hypercyclic on $X = \ell^{p}(v)$ if and only if $\liminf_{k} v_{k} = 0$.

(Godefroy. Shapiro, 1991)

The backward shift B is Devaney chaotic on $X = \ell^p(v)$ if and only if $\sum_{i \in \mathbb{N}} v_i < \infty$.

(Martínez-Giménez, Oprocha, Peris, 2009)

If the backward shift B is Devaney chaotic on $X = \ell^p(v)$, then it is distributionally chaotic.

(Martínez-Giménez, Oprocha, Peris)

Let $v_j := 1/k$, $n_k \le j < n_{k+1}$, where $n_k := (k!)^3$, $k \in \mathbb{N}$. Then T := B is hypercyclic on $X = \ell^p(v)$, but it is not distributionally chaotic.

(人間) (人) (人) (人) (人)

Definitions

- (Beauzamy, 1988) A vector x ∈ X is called irregular for an operator T : X → X on a Banach space X provided that sup_n ||Tⁿx|| = ∞ and inf_n ||Tⁿx|| = 0. In particular, the line S := {λx : λ ∈ K} is a scrambled set for T.
- (Prajitura, 2009) An operator T : X → X is completely irregular if every x ∈ X \ {0} is irregular. In particular, the full space S = X is a scrambled set for T.

(Bermúdez, Bonilla, Martínez-Giménez, Peris, 2011)

An operator $T : X \to X$ on a Banach space is Li-Yorke chaotic if and only if it admits irregular vectors.

▲ 国 ▶ | ▲ 国 ▶

Definitions

- (Beauzamy, 1988) A vector x ∈ X is called irregular for an operator T : X → X on a Banach space X provided that sup_n ||Tⁿx|| = ∞ and inf_n ||Tⁿx|| = 0. In particular, the line S := {λx : λ ∈ K} is a scrambled set for T.
- (Prajitura, 2009) An operator $T : X \to X$ is **completely irregular** if every $x \in X \setminus \{0\}$ is irregular. In particular, the full space S = X is a scrambled set for T.

(Bermúdez, Bonilla, Martínez-Giménez, Peris, 2011)

An operator $T : X \to X$ on a Banach space is Li-Yorke chaotic if and only if it admits irregular vectors.

* 国家 * 国家

Definitions

- (Beauzamy, 1988) A vector x ∈ X is called irregular for an operator T : X → X on a Banach space X provided that sup_n ||Tⁿx|| = ∞ and inf_n ||Tⁿx|| = 0. In particular, the line S := {λx : λ ∈ K} is a scrambled set for T.
- (Prajitura, 2009) An operator $T : X \to X$ is **completely irregular** if every $x \in X \setminus \{0\}$ is irregular. In particular, the full space S = X is a scrambled set for T.

(Bermúdez, Bonilla, Martínez-Giménez, Peris, 2011)

An operator $T : X \to X$ on a Banach space is Li-Yorke chaotic if and only if it admits irregular vectors.

글 🖌 🖌 글 🕨

Definition

An operator T on a Fréchet space X with a fundamental sequence of seminorms $(\|\cdot\|_k)_k$, and a vector $x \in X$, we say that x is a **distributionally irregular** vector for T if there are subsets $A, B \subset \mathbb{N}$ with $\overline{\text{dens}}(A) = \overline{\text{dens}}(B) = 1$, such that $\lim_{n \in A} T^n x = 0$, and there exists $m \in \mathbb{N}$ such that $\lim_{n \in B} \|T^n x\|_m = \infty$.

Definition

Let X be a Fréchet space with a fundamental system of seminorms $\|\cdot\|_k \quad (k \in \mathbb{N})$. Let $T \in B(X)$. We say that T satisfies the distributional chaotic criterion (DCC) if there exist sequences $(x_m)_m, (y_m)_m \subset X$ such that:

- (a) there exists a subset $A \subset \mathbb{N}$ with dens(A) = 1 such that $\lim_{n \in A} T^n x_m = 0$ for all m;
- (b) y_m ∈ span{x_k : k ∈ N}, lim_{m→∞} y_m = 0 and there exist ε > 0 and a sequence of positive integers {N_m}_m with card{j ≤ N_m : d(Tⁱy_m, 0) > ε} ≥ N_m(1 − m⁻¹) for all m ∈ N.

→ Ξ → → Ξ →

Definition

An operator T on a Fréchet space X with a fundamental sequence of seminorms $(\|\cdot\|_k)_k$, and a vector $x \in X$, we say that x is a **distributionally irregular** vector for T if there are subsets $A, B \subset \mathbb{N}$ with $\overline{\text{dens}}(A) = \overline{\text{dens}}(B) = 1$, such that $\lim_{n \in A} T^n x = 0$, and there exists $m \in \mathbb{N}$ such that $\lim_{n \in B} \|T^n x\|_m = \infty$.

Definition

Let X be a Fréchet space with a fundamental system of seminorms $\|\cdot\|_k$ $(k \in \mathbb{N})$. Let $T \in B(X)$. We say that T satisfies the distributional chaotic criterion (DCC) if there exist sequences $(x_m)_m, (y_m)_m \subset X$ such that:

- (a) there exists a subset $A \subset \mathbb{N}$ with $\overline{\text{dens}}(A) = 1$ such that $\lim_{n \in A} T^n x_m = 0$ for all m;
- (b) $y_m \in \overline{\text{span}\{x_k : k \in \mathbb{N}\}}, \lim_{m \to \infty} y_m = 0 \text{ and there exist } \varepsilon > 0 \text{ and a sequence}$ of positive integers $\{N_m\}_m$ with $\operatorname{card}\{j \leq N_m : d(T^j y_m, 0) > \varepsilon\} \geq N_m(1 - m^{-1}) \text{ for all } m \in \mathbb{N}.$

→ Ξ → → Ξ →

Theorem

Let X be a Fréchet space with a fundamental system $\|\cdot\|_k$ $(k \in \mathbb{N})$ of seminorms. Let $T \in B(X)$. The following statements are equivalent:

- (i) T satisfies (DCC);
- (ii) T has a distributionally irregular vector;
- (iii) T is distributionally chaotic;
- (iv) T admits a distributionally chaotic pair.

Theorem

Let T be a linear and continuous operator on X. If

- there exists a dense set X_0 such that $\lim_{n \to \infty} T^n x = 0$, for all $x \in X_0$ and
- one of the following conditions is true:
 a) X is a Fréchet space and there exists a eigenvalue λ with |λ| > 1.
 b) X is a Banach space and ∑ 1/||Tⁿ|| < ∞ (in particular if r(T) > 1).
 c) X is a Hilbert space and ∑ 1/||Tⁿ||² < ∞(in particular if σ_p(T) ∩ T has positive Lebesgue measure).

then T is densely distributionally chaotic.

Example

Let Ω be a simply connected domain and ϕ is an automorphism on Ω and let $C_{\phi}: H(\Omega) \to H(\Omega)$ be the composition operator $C_{\phi}(f)(z) = f(\phi(z))$. Then the following statements are equivalent:

- (i) C_{ϕ} is chaotic;
- (ii) C_{ϕ} is mixing;
- (iii) C_{ϕ} is hypercyclic;
- (iv) $(\phi)^n)_n$ is a run-away sequence;
- (v) ϕ has no a fixed point;
- (vi) C_{ϕ} is densely distributionally chaotic.

< ∃⇒