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The restricted three body problem

The (circular) restricted planar three body problem (RCP3BP)

We consider the motion of a particle q with zero mass under the effects of the Newtonian
gravitational force exerted by two primaries q1 and q2 of masses µ and 1− µ evolving in
circular orbits around their center of mass.
This is a particular case of the elliptic one, where the primaries move in elliptic orbits.
Typical models in the elliptic case with eccentricity e0:

Sun–Jupiter–asteroid or comet: e0 = 0.048

Sun–Earth–Moon systems: e0 = 0.016

In this work we will consider e0 = 0
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The restricted three body problem

The equations of the RCP3BP

The motion of the particle q is described by

d2q

dt2
=

(1− µ)(q1(t)− q)

|q1(t)− q|3 +
µ(q2(t)− q)

|q2(t)− q|3 ,

where q1(t) = −µq0(t), q2(t) = (1− µ)q0(t) and q0(t) = (cos t, sin t) correspond to the
circular motion of the primaries.
This is a 2π-periodic in time Hamiltonian system (2 and 1/2 degrees of freedom) with
Hamiltonian

H(q, p, t;µ) =
p2

2
− (1− µ)

|q − q1(t)|
− µ

|q − q2(t)|
.

Parameter: µ, not necessarily small.
Observation: µ = 1/2, The Hamiltonian is π-periodic in time.
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The restricted three body problem
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The restricted three body problem

Oscillatory motions in the RCP3BP

Chazy (1922) gave a classification of all possible states that a three body problem can
approach as time tends to infinity.
For the restricted three body problem (either planar or spatial, circular or elliptic) the
possible final states are reduced to four:

H± (hyperbolic): ‖q(t)‖ → ∞ and ‖q̇(t)‖ → c > 0 as t → ±∞.

P± (parabolic): ‖q(t)‖ → ∞ and ‖q̇(t)‖ → 0 as t → ±∞.

B± (bounded): lim sup
t→±∞ ‖q‖ < +∞.

OS± (oscillatory): lim sup
t→±∞ ‖q‖ = +∞ and lim inft→±∞ ‖q‖ < +∞.

Examples of all types of motion except oscillatory were already known by Chazy.
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The restricted three body problem

Oscillatory motions in the RCP3BP

Oscillatory motions were proved by

1 Sitnikov, 1960 considered the restricted spatial three body problem with mass ratio
µ = 1/2 and the three bodies in a certain symmetric configuration.

2 Moser, 1973 gave a new proof considering the invariant manifolds of infinity and
prove that they intersected transversally. Then, one could establish symbolic
dynamics close to these invariant manifolds which lead to the existence of oscillatory
motions.

3 LLibre and Simó, 1980 (Oscillatory solutions in the planar circular restricted
three-body problem, Mathematische Annalen 248) proved their existence for the
RCP3BP with µ small enough, using that for µ = 0 the stable and unstable
invariant manifolds coincide and Melnikov Theory. They considered the Jacobi
constant J big enough.
The proof is only valid for µ exponentially small with respect to the Jacobi constant.
The orbits that they obtain are far from collisions.
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The restricted three body problem

Oscillatory motions in the RCP3BP

1 Xia, 1992 (Melnikov method and transversal homoclinic points in the restricted
three-body problem, Journal of Differential Equations 96, 1) showed that the
invariant manifolds intersect transversally for any mass ratio µ ∈ (0, 1/2] except for
a finite number of values using analyticity arguments and LLibre-Simó results.

2 Llibre and Simó, 1980 proved the existence of oscillatory motions for the (non
necessarily restricted) collinear three body problem (Some homoclinic phenomena in
the three-body problem, J. Differential Equations 37,3)

3 J. Galante and V. Kaloshin, 2011 use Aubry-Mather theory and semi-infinite regions
of instability to prove the existence of orbits which initially are in the range of our
Solar System and become oscillatory as time tends to infinity for the RPC3BP with
a realistic mass ratio for the Jupiter-Sun pair. (Destruction of invariant curves in the
restricted circular planar three-body problem by using comparison of action, Duke
Mathematical Journal, 159)
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The restricted three body problem

Oscillatory motions in the RCP3BP

We will show that there exist oscillatory orbits for the RPC3BP, which are orbits that
satisfy that

lim sup
t→±∞

‖q‖ = +∞ and lim inf
t→±∞

‖q‖ < +∞.

When µ = 0, the motion of the massless body is only influenced by one of the primaries
and therefore it satisfies Kepler’s laws. This implies that oscillatory motions cannot exist.
We will show that oscillatory orbits do exist for any value of mass ratio µ ∈ (0, 1/2].
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The restricted three body problem

Oscillatory motions in the RCP3BP

The method we will use is similar to the method by LLibre-Simó, where they showed that
these orbits come from the existence of chaotic behavior near some parabolic orbits of
the two body problem.
This chaotic behaviour comes from the splitting of some invariant manifold near the
parabolic orbits of the two body problem.

The orbits they found occur for large values of the Jacobi constant and for µ small
enough.

We will use the same fact to see that they exist for any value of the mass ratio µ.
Our result will make the RCTBP an “a priori chaotic” system in the language of Arnold
diffusion: existence of a family of periodic orbits with a transversal homoclinic orbit.
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The restricted three body problem

Hamiltonian equations in polar coordinates

Polar coordinates: q = (x , y) = (r cosα, r sinα), α ∈ T, r ≥ 0.
Hamiltonian in polar coordinates:

H(r , α− t,Pr ,Pα;µ) =
P2
r

2
+

P2
α

2r2
− Ũ(r , α− t;µ)

where the potential Ũ(r , φ;µ) is given by:

Ũ(r , φ;µ) =
(1− µ)

(r2 − 2µr cosφ+ µ2)1/2
+

µ

(r2 + 2(1− µ)r cosφ+ (1− µ)2)1/2
.

(r ,Pr ) and (α,Pα) are pairs of conjugate variables. Notation: Pα = G , Pr = y

H(r , α− t, y ,G ;µ) =
y2

2
+

G 2

2r2
− Ũ(r , α− t;µ)

Notice that Ũ(r , α− t; 0) = 1
r
, the two body problem potential.
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The restricted three body problem

Hamiltonian equations in polar coordinates

The equations of motion, which are 2π-periodic in t, are:

ṙ = y

ẏ = G
2

r3
+ ∂r Ũ(r , α− t;µ)

α̇ = G

r2

Ġ = ∂αŨ(r , α− t;µ)

As Ũ(φ, r ;µ) = O( 1
r
), for any value of G0, the “infinity”: (∞, 0, α0,G0) is a periodic

solution.
We will study the invariant manifolds of this “infinity”.
In fact, “infinity” is foliated by periodic orbits which can be parameterized by the angular
momentum G0
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The restricted three body problem

The Jacobi constant

The RCTBP has a first integral: the so called Jabobi constant.
In our case, in polar coordinates, it is given by

J (r , α− t, y ,G ;µ) = H(r , α− t, y ,G ;µ)− G

therefore orbits of the RCTBP stay in the hypersurfaces

J = J0

The periodic orbit of infinity (∞, 0, α0,G0) belongs to the surface

J = −G0

The oscillatory orbits will be generated by the intersection of the invariant manifolds of
this periodic orbit, which lie in the same surface.
We will see that they exist for large values of G0.
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The restricted three body problem

The autonomous model: rotating coordinates

With the change φ = α− t the periodic Hamiltonian system becomes a two degrees of
freedom autonomous Hamiltonian, of Hamiltonian

J (r , φ, y ,G , µ) = H(r , φ, y ,G ;µ)− G

Then the Hamiltonian J (r , φ, y ,G ;µ) is a first integral.
The equations of motion are:

ṙ = y

ẏ = G
2

r3
+ ∂r Ũ(r , φ;µ)

φ̇ = G

r2
− 1

Ġ = ∂φŨ(r , φ;µ)

These equations are the polar version of the equations in synodic coordinates.
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The restricted three body problem

The autonomous model: rotating coordinates

Facts:

The periodic orbits at infinity contained in J = −G0 are:

Λ∞,G0 = {(r , φ, y ,G) : r = ∞, y = 0, φ ∈ T,G = G0}.

Therefore ”infinity” is a two dimensional invariant manifold foliated by periodic
orbits.

Λ∞ = ∪Λ∞,G0

The stable and unstable manifolds of each Λ∞,G0 : Wu,s
∞,G0

are two dimensional and
are contained in J = −G0.
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The restricted three body problem

The two body problem as the classical limit for µ → 0

The classical way to see the RCTBP as a perturbation of the TBP is to consider µ small,
because Ũ(r , φ; 0) = 1

r
.

When µ = 0, the only primary is fixed at the origin: q1(t) = 0. The primary and the
massless particle q form the two-body problem

H(r , α− t, y ,G ; 0) = H0(r , y ,G) =
y2

2
+

G 2

2r2
− 1

r
,

h = H0 is the energy.
J0(r , y ,G) = H0(r , y ,G)− G and H0 are the first integrals. Therefore G is also
preserved.
If h < 0, motions are elliptic of eccentricity e =

√
1 + 2hG 2.

If h = 0 (which corresponds to e = 1) the motion is parabolic.
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The restricted three body problem

The two body problem: µ = 0

Equations in rotating coordinates:

ṙ = y

φ̇ =
G

r2
− 1

ẏ =
G 2

r3
− 1

r2

Ġ = 0

G is a first integral. For every fixed value of G , the variables (r , y) form a Hamiltonian
system with one degree of freedom
The “infinity” (r = ∞, y = 0) is a critical point! H0(r , y ,G) = 0 is a homoclinic
manifold to infinity.
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The restricted three body problem

The autonomous model: rotating coordinates

Facts:

One can consider in the level of energy J (r , φ, y ,G) = −G0 a Poincaré map

Pφ0 : {φ = φ0} −→ {φ = φ0}
(r , y) 7→ Pφ0(r , y)

This Poincaré map is area preserving (it preserves the symplectic form Ω = dr ∧ dy).
The point (∞, 0) is fixed and their invariant manifolds are curves. A natural way to
quantify the splitting of separatrices is to measure the angle at their intersection or
the area of the lobes that are formed between them.
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The restricted three body problem

Theorem

Fix µ ∈ (0, 1/2]. Then, there exists G∗ > 0 such that for any G0 > G∗, the invariant

manifolds of infinity Ws

∞,G0
and Wu

∞,G0
intersect transversally in J (r , φ, y ,G) = −G0.

Moreover, the area of the lobes between the corresponding invariant curves γu,s of the

Poincaré map Pφ0 is given by

A = µ(1− µ)
√
π

[
1− 2µ√

2
G

−3/2
0 e

−
G
3
0
3 + 8G

1/2
0 e

−
2G3

0
3

](
1 + O

(
G

−1/2
0

))
.
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The restricted three body problem

Theorem

There exist G∗
0 and a curve η in the parameter region

(µ,G0) ∈
(
0,

1

2

]
× (G∗

0 ,+∞),

of the form

µ = µ∗(G0) =
1

2
− 16

√
2G 2

0 e
−

G
3
0
3

(
1 + O

(
G

−1/2
0

))
,

such that, for (µ,G0) ∈ η,

the invariant curves γu,s of the Poincaré map PG0,φ0 have a cubic homoclinic

tangency and a transversal homoclinic point and

the area of the lobes between the invariant curves γu,s between the homoclinic

tangency and a consecutive transversal homoclinic point is given by

A = 10
√
πG

1/2
0 e

−2
G
3
0
3

(
1 +O

(
G

−1/2
0

))
.
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The restricted three body problem

Bifurcation curve η in the parameter space where the homoclinic tangency is undergone.
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The restricted three body problem

The two body problem as the singular limit for G0 → ∞

As we want to study the manifolds of the periodic orbits Λ∞,G0 , we should restrict
ourselves to J = −G0.
The existence of exponentially small phenomena usually arise when

The system possesses two different time scales.

The system has combined fast elliptic behavior and hyperbolic (or parabolic)
behavior.

In J = −G0 we perform the following changes of variables

r = G
2
0 r̃ , y = G

−1
0 ỹ , α = α̃ and G = G0G̃

and we rescale time as
t = G

3
0 s.

The rescaled system is Hamiltonian with respect

H̃(r̃ , α− G
3
0 s, ỹ , G̃ ;µ,G0) =

ỹ2

2
+

G̃ 2

2r̃2
− Ṽ (r̃ , α− G

3
0 s;µ,G0),
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The restricted three body problem

The equations in scaled variables for big G0

where

Ṽ (r̃ , φ;µ,G0) =
1− µ

(
r̃2 − 2( µ

G2
0
)r̃ cosφ+ ( µ

G2
0
)2
)1/2

+
µ

(
r̃2 + 2( 1−µ

G2
0
)r̃ cosφ+ ( 1−µ

G2
0
)2
)1/2

.

The equations of motion are

d

ds
r̃ = ỹ

d

ds
ỹ =

G̃ 2

r̃3
+ ∂r̃ Ṽ (r̃ , α− G

3
0 s;µ,G0)

d

ds
α =

G̃

r̃2

d

ds
G̃ = ∂αṼ (r̃ , α− G

3
0 s;µ,G0).

Now the two time scales become clear. Indeed, now we have that ˙̃y ∼ ˙̃r ∼ 1, which are
the variables that will define the separatrix, whereas the perturbation depends fast in
time.
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The restricted three body problem

Note that, for any µ, Ṽ = 1
r̃
+ O(G−2

0 ) and its dependence on time is through
φ = α− G 3

0 s, thus, for G0 ≫ 1, we are dealing with a fast oscillating small perturbation
of the two body problem.

The Jacobi constant is now J = G−2
0 H̃ − G0G̃ and the periodic orbit at infinity is given

by (r̃ , α, ỹ , G̃) = (∞, α, 0, 1), which belongs to the surface of Jacobi constant J̃ = −G0.

The two body problem is at the same time the regular (when µ → 0) and singular (when
G0 → ∞) limit of our system.
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The restricted three body problem

Proof, sort of

In rotating coordinates, with φ = α− G 3
0 s, the Hamiltonian becomes

H(r̃ , φ, ỹ , G̃ ;µ,G0) =
ỹ2

2
− G

3
0 G̃ +

G̃ 2

2r̃2
− Ṽ (r̃ , φ;µ,G0).

We study the invariant manifolds of infinity without using McGehee Coordinates.
To study the invariant manifolds of infinity, we will follow the approach of
Lochak-Marco-Sauzin:
The invariant manifolds are Lagrangian and therefore they can be locally parameterized
as graphs of a generating function S(r̃ , φ):

(ỹ , G̃) = (∂r̃S , ∂φS)

And S is a solution of the Hamilton-Jacobi equation:

H(r̃ , φ, ∂r̃S , ∂φS ;µ;G0) = −G
3
0 .
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The restricted three body problem

When G0 = ∞ (µ = 0)

The solution of H-J equation, S0, is explicit.

The homoclinic of the periodic orbits at infinity is known:

(r̃ , α̃, ỹ , G̃) = (r̃h(s), α0 + α̃h(s), ỹh(s), 1).

Singularities at ±i/3.
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The restricted three body problem

Then, for G0 >> 1,

S = S0 + S1.

Change of variables: T1(v , ξ) = S1(r̃h(v), ξ + α̃h(v)). We look for T u,s such that
satisfies H-J and

T u,s (v , ξ) are 2π-periodic respect to ξ

T s,u(v , ξ) → 0 as v → ±∞

A fixed point scheme and

T
u − T

s ∼
∫ +∞

−∞

V (r̃h(v + s), ξ − G
3
0 s + α̃h(v + s);µ,G0)ds

where V (r , φ;µ,G0) = Ṽ (r , φ;µ,G0)− 1/r .
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The restricted three body problem

Computation of the modified Melnikov potential

Recipe to compute

L(v , ξ;µ,G0) =

∫ +∞

−∞

V (r̃h(v + s), ξ − G
3
0 s + α̃h(v + s);µ,G0)ds

=

∫ +∞

−∞

V (r̃h(t), ξ − G
3
0 t + G

3
0 v + α̃h(t);µ,G0)dt,

Write V (r̃ , φ;µ,G0) =
∑

ℓ∈Z
Vℓ(r̃ ;µ,G0)e

iℓφ

L(v , ξ;µ,G0) =
∑

ℓ∈Z
Lℓ(v ;µ,G0)e

iℓξ

Lℓ(v ;µ,G0) = L̄ℓ(µ;G0)e
iℓG3

0 v

L̄ℓ(µ,G0) =
∫ +∞

−∞
Vℓ(r̃h(t);µ,G0)e

iℓα̃h(t)e−iℓG3
0 t dt.
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