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Congratulations To

Jaume Llibre

For His 60th Birthday !

Thanks For
His Mathematics

And
His Contributions To Mathematical Society
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About Liénard Equations

The one dimensional second order differential equation

ẍ + f (x) ẋ + g(x) = 0,

was studied for a long time, and it has a very wide applications in different fields.
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The one dimensional second order differential equation

ẍ + f (x) ẋ + g(x) = 0,

was studied for a long time, and it has a very wide applications in different fields.
Let ẋ = y, then it can be changed to a planar system

ẋ = y,

ẏ = −g(x)− f (x)y,
or

ẋ = y − F (x),
ẏ = −g(x),

where F (x) =
∫ x

0 f (x)dx.
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About Liénard Equations

The one dimensional second order differential equation

ẍ + f (x) ẋ + g(x) = 0,

was studied for a long time, and it has a very wide applications in different fields.
Let ẋ = y, then it can be changed to a planar system

ẋ = y,

ẏ = −g(x)− f (x)y,
or

ẋ = y − F (x),
ẏ = −g(x),

where F (x) =
∫ x

0 f (x)dx.

A basic problem is :
the system can have how many limit cycles ?

A lot of papers studied this problem for different f (x) and g(x).
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Limit Cycles

• A limit cycle means a isolated periodic orbit.
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of the system. The study is not easy in general.
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Limit Cycles

• A limit cycle means a isolated periodic orbit.

• The study of the number of limit cycles is important to understand the behavior

of the system. The study is not easy in general.

• If f (x) and g(x) are polynomials, then the above basic problem is a restricted

version of the Hilbert’s 16th problem, which is open even for the quadratic

case, although a lot of mathematicians have studied the Hilbert’s 16th problem

for more than 100 years.
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Lins-de Melo-Pugh’s conjecture

Consider a classical polynomial Liénard differential equation

ẋ = y − F (x),

ẏ = −x,

where F (x) is a polynomial of degree n.

In 1977 A. Lins, W. de Melo and C. C. Pugh conjectured that the equation has

at most
[
n−1
2

]
limit cycles,

where
[
n−1

2

]
means the largest integer less than or equal to n−1

2 .
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Known Results

The Lins-de Melo-Pugh conjecture is

• True for n=3.

- A. Lins, W. de Melo and C. C. Pugh, 1977.
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• Not true for n = 7 (or n > 7 odd).

- F. Dumortier, D. Panazzolo and R. Roussarie , 2007.
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Known Results

The Lins-de Melo-Pugh conjecture is

• True for n=3.

- A. Lins, W. de Melo and C. C. Pugh, 1977.

• Not true for n = 7 (or n > 7 odd).

- F. Dumortier, D. Panazzolo and R. Roussarie , 2007.

• Not true for n ≥ 6: at least 2 more limit cycles can appear.

- P. De Maesschalck and F. Dumortier, 2011.

The last two results were obtained by using singular perturbations.
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A partial Result on n = 4

Consider the Liénard differential equation of degree four

ẋ = y − F (x),

ẏ = −x,

where F (x) = b1x + b2x
2 + b3x

3 + x4.

Xianwu Zeng proved in 1982 that if

b1 < 0 < b3, b3
3 − 4b2b3 + 8b1 ≤ 0,

then the system has at most one limit cycle.

We will give a different proof for this result, and explain the geometric meaning of his

conditions.
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Main Result

The Lins-de Melo-Pugh conjecture is

True for n=4.
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Main Result

The Lins-de Melo-Pugh conjecture is

True for n=4.

More precisely

Any classical Liénard differential equation of degree four has at most one limit

cycle, and the limit cycle is hyperbolic, if it exists.

This result was published in JDE, 252 (2012), 3142-3162.
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What is Still Open ?

Concerning the Lins-de Melo-Pugh conjecture

• It is true or not for n = 5 ?
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What is Still Open ?

Concerning the Lins-de Melo-Pugh conjecture

• It is true or not for n = 5 ?

•What is the maximal number of limit cycles for n ≥ 6 ?

- P. De Maesschalck and F. Dumortier proved in 2011 that at least 2 more limit

cycles can appear for n ≥ 6. The next problem is
[
n−1

2

]
+ 2 is the maximal number of limit cycles for n ≥ 6 or not ?
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The Main Steps of the Proof for n = 4

• Put the equation to a ”normal form”;

• Find exact ranges of parameters for which the system may have limit cycles;

• Obtain the same sign of the divergence integral along any closed orbit;

- Use some basic properties of orbits of Liénard equations;

- Use symmetry-like property for partial estimetes;

- Use different changes of variables for different cases;

- Use the Green formula in some cases;

- Use the Differential Inequality Theorem several times;

- The exact range of parameters is crucial to check conditions;

- · · · · · ·
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A Normal Form of the Equation

Without loss of generality, we can transform the equation to

dx

dt
= y − F (x), dy

dt
= −(x− λ),

where λ is a constant, F (x) = a
2x

2 + b
3x

3 + 1
4x

4, satisfying

a ≥ 0, b ≥ 0, a ≥ 2

9
b2.
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A Normal Form of the Equation

Without loss of generality, we can transform the equation to

dx

dt
= y − F (x), dy

dt
= −(x− λ),

where λ is a constant, F (x) = a
2x

2 + b
3x

3 + 1
4x

4, satisfying

a ≥ 0, b ≥ 0, a ≥ 2

9
b2.

The shape of the curve CF := {(x, y) : y = F (x)} has 4 cases:

(A): a > 1
4b

2, CF has a unique minimum point;

(B): a = 1
4b

2, CF has a minimum and a inflection points;

(C): 2
9b

2 < a < 1
4b

2, CF has two minimum and one maximum points;

(D): a = 2
9b

2, a symmetry case of (C).
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CF
CF

CF
CF

(A) (B) (C) (D)

00 00 x′ xm xM − 2b
3

− b
3

dx

dt
= y − F (x),

dy

dt
= −(x− λ),

The system may have limit cycles only in the case a ≥ 2b2/9 > 0 and

(I) λ ∈ (− b
3
, 0) in cases (A), (B), (C) and (D) ⇒ the unique limit cycle is stable.

or

(II) λ ∈ (xm, xM) in cases (C) and (D) ⇒ the unique limit cycle is unstable.

This gives a range of the location of the unique singularity (λ, F (λ)).

The condition of Zeng’s result is exactly the case (I) above.

1
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dx

dt
= y − F (x),

dy

dt
= −(x− λ) ⇒ dx

dt
= y − E(x),

dy

dt
= −x

(I)

(II)

⇒

⇒

x 7→ −x

1
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Divergence Integral Along a Closed Orbit of Liénard Equation

dx

dt
= y − E(x),

dy

dt
= −x.

Suppose that the system has a closed orbit L, we consider

0

x

y

P
Q

L

CE

IE(L) := −
∮

L+

E′(x) dt =
∮

L+

E′(x)
x

dy =

∮

L+

E′(x)
E(x)− y

dx,

where L+ means the integral is taken along L clockwise, given by the direction of the vector field.
The different forms will be used in different places.

• If IE(L) < 0 (> 0), then the orbit L is hyperbolic and stable (unstable).

• If IE(L) has the same sign for any orbit (if exists), then the system has at most
one limit cycle.

1
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Some Properties of Liénard Equations

dx

dt
= y − E(x),

dy

dt
= −x.

E(x) < 0 < E(−x) for 0 < x≪ 1 and E(x) < E(−x) for 0 < x < x0, E(x0) = E(−x0).

x

y

O

A

B

P Q
ϕ(x)

ψ(x)

xx̃
β

γ

CE

• ψ(−x) < ψ(x) < 0 < ϕ(−x) < ϕ(x) for 0 < x < x0.

• xP < −x0 and xQ > x0.

• yP = F (xP ) < yQ = F (xQ).

• In region −λ ≤ x < +∞ the system has at most one limit cycle.

• Some symmetry-like property in the region with ”U-arc” for x > 0 or

”Ω-arc” for x < 0. We have IE [0, β] < 0.

[By using Zhang Zhifen’s Uniqueness Theorem, a result by Rychkov.
See the book by Dumortier, Llibre and Artés, for example]

1
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An Example of Case (I)

x

y

O

P

Q

ϕ

ψ

Q∗ϕ∗

CE

βU V W

• By using the symmetry-like property: IE[xU , xV ] + IE [0, β] < 0;

• By a similar estimate: IE[xV , 0] + IE [β, xW ] < 0;

• By using the Green formula, a change of variables and the Differential Inequality
Theorem

IE [xW , xQ] < I∗E [xW , xQ∗ ] < −IE [xP , xU ], i. e. IE[xP , xU ] + IE [xW , xQ] < 0.

1
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The Study of Case (II): xP is right to left minimum

xx

y
y

OO

P ′

−β

P

Q CG+

CG−

x0γ
CH

β

ϕ+ϕ−ϕ1

ψ−

ψ+

ψ1

CG

U
V

R

CG−

(i)
(ii)

Let G(x) = E(−x). If x0 ≥ γ, or x0 < γ and yQ ≥ 0 the study is relatively simple.
If x0 < γ and yQ < 0, let k = yP

yQ
> 1, x̄ = k2(x− β) + β ∈ (β, xP ′ ) for x ∈ (β, xR);

Let H(x) = 1
kG(−x̄(x)), ϕ1(x) =

1
kϕ(−x̄(x)), ψ1(x) =

1
kψ(−x̄(x)). Then

IG[xP ,−β] =
∫ −β

xP

[
G′(t)

G(t)− ϕ(t)
− G′(t)
G(t) − ψ(t)

]
dt =

∫ xR

β

[
− H ′(x)
H(x)− ϕ1(x)

+
H ′(x)

H(x)− ψ1(x)

]
dx.

Define x̂ = x̂(x) ∈ (0, xQ) by H(x) = G(x̂(x)) for x ∈ (β, xR), ϕ2(x) = ϕ(x̂(x)), ψ2(x) = ψ(x̂(x)). Then

IG[0, xQ] =

∫ xQ

0

[
G′(t)

G(t)− ϕ(t)
− G′(t)
G(t) − ψ(t)

]
dt =

∫ xR

β

[
− H ′(x)
H(x)− ϕ2(x)

+
H ′(x)

H(x)− ψ2(x)

]
dx.

IG[XP ,−β] + IG[0, xQ] =

∫ xR

β

[
H ′(x)(ϕ2(x)− ϕ1(x))

(H(x) − ϕ1(x))(H(x) − ϕ2(x))
+

H ′(x)(ψ1(x)− ψ2(x))

(H(x)− ψ1(x))(H(x) − ψ2(x))

]
dx.

1
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Some Facts need to be Proved

• H ′(x) < 0 for x ∈ (β, xR).

• CH ∩ CG+
consists of a unique point.

• xR < xQ and yR = yQ.

• ϕ2(x)− ϕ1(x) > 0, ψ1(x)− ψ2(x) > 0 for x ∈ (β, xR).
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The Study of Case (II): xP is left to left minimum

x x

y y

O

P ′

B∗

P P

Q Q

Ū

ϕ
ϕ

ψ ψ

ϕ̄

P ∗

U U
V V

ψ̄

ACG

CG

CḠ

Z Z

B

U∗

A∗
ϕ∗

ψ∗

λ λγ̄γ γ

R∗

Ω∗Ω

Ω′

R

(i) (ii)

The two minimum points at U and V , xU = λ < 0, xV = γ > 0. We prove 3 things:

(1) xQ > γ by using Differential Inequality Theorem xQ > xP ′ > γ̄ > γ.

(2) IG[λ, γ] < 0 by using the same methods and transformations as above.

(3) IG[xP , λ] + IG[γ, xQ] < 0 by using Differential Inequality Theorem and Green formula.

1
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Some Computations in the Last Step

∫∫

Ω∗

[
d

dx

(
G′(x)

x

)
− d

dx

(
G′(−(x + c))

−(x + c)

)]
dxdy +

∫∫

Ω′\Ω∗

d

dx

(
G′(x)

x

)
dxdy,

where c = |λ| − γ = xm − 2λ > 0. The first integrand is equal to

−2(b + 3λ + c) + λ(λ2 + bλ + a)

(
1

x2
+

1

(x + c)2

)
> 0,

because x ≥ γ > 0, b + 3λ + c = b + xm + λ < b + xm + xM = 0, since

λm < λM are the two negative roots of λ2 + bλ + a = 0 in this case;

hence we also have λ(λ2 + bλ + a) > 0 for λ < 0 and λ ∈ (xm, xM).

The second integrand is also positive, because

d

dx

(
G′(x)

x

)
=

1

x2
[2x3 − (b + 3λ)x2 + λ(λ2 + bλ + a)] > 0,

since x > 0 and b + 3λ < 0.
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THANK YOU VERY MUCH!


