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PRCs: a quick review of “classical” theory

Phase variation: amplitude A stimulus at phase θ ∈ [0, 1)

The phase advancement/delay due to an
external input at time ts is given by

∆θ = (T0 − T1(θ,A))/T0,

θ = (ts − tlast)/T0 ∈ [0, 1).

Phase response curves: PRC(θ,A)



PRCs: a quick review of “classical” theory

We assume to have an attracting limit cycle of the system

Γ := {γ̃(t), t ∈ [0,T0)} = {γ(θ), θ ∈ [0, 1)}.

Definition
We say that a point q ∈ Ω ⊂ Rd , Ω open
domain containing the limit cycle Γ, is in
asymptotic phase with a point p ∈ Γ if

lim
t→∞

|Φt(q)− Φt(p)| = 0,

where Φt(x) is the trajectory of X such
that Φ0(x) = x .
The set of points having the same
asymptotic phase is called isochron.



PRCs: a quick review of “classical” theory

Generalization of the phase in a neighbourhood of the limit
cycle

This defines a unique scalar function in a neighbourhood Ω of Γ where:

ϑ : Ω ⊂ Rd → T = [0, 1)

x 7→ ϑ(x)

such that
lim

t→∞
|Φt(x)− γ(ϑ(x) + t/T )| = 0.

The value ϑ(x) is the asymptotic phase of x . The isochrons are the
level sets of the function ϑ(x), and ϑ(γ(θ)) = θ.



PRCs: a quick review of “classical” theory

A brief pulse stimulus in the entire space: geometry and
time

For a given stimulus A:

∆(θ; A) = ϑ(γ(θ) + A)− θ: phase variation depends on the geometry of
isochrons and it needs some time to relax back before next stimulus.



PRCs: a quick review of “classical” theory

Some results on isochrons

[Winfree, 1974] When is a limit cycle isochronous?

[Guckenheimer, 1975]: (From Coddington-Levinson 1955, Hirsch and
Pugh, 1970) If γ is a stable (hyperbolic) limit cycle, then γ is
isochronous; moreover, the isochrons are the leaves of the stable
manifold, that is W s

γ(θ), for θ ∈ T and

W s
γ =

⋃
θ∈[0,1)

W s
γ(θ).

[Chicone-Liu, 2004] [Dumortier, 2006] (X being a planar vector field)
γ is isochronous ⇔ γ is hyperbolic or
{π(p) = p, π′(p) = · · · = π(k)(p) = 0, · · · = π(k+1)(p) 6= 0} and
{τ(p) = T , τ ′(p) = · · · = τ (n)(p) = 0}, with n ≥ k ≥ 2.

[Sabatini, 2004] (X being a planar vector field) γ is isochronous ⇔ ∃
a vector field Y and a scalar µ such that [Y ,X ] = µY . It does not
require hyperbolicity.



PRCs: a quick review of “classical” theory

Isochrons from Lie symmetry point of view

Geometrical interpretation for
flows of Lie symmetries:
[Y ,X ] = µY ⇒ X brings orbits
of Y to orbits of Y .

Recall Lie bracket

[Y ,X ] = DX Y−DY X = ∂Y X−∂X Y

[Freire-Gasull-Guillamon, 2007] Let X being a planar vector field
having a Lie symmetry. The characteristic exponent of γ is given by

λ =

∫ 1

0
µ(γ(θ)) dθ.

then, ∫ 1

0
µ(γ(θ)) dθ =

∫ 1

0
div(X (γ(θ))) dθ



PRCs: a quick review of “classical” theory

Phase variation under a weak brief pulse: infinitesimal
PRC

Consider a small perturbation of the system:

ẋ = X (x) + ~ε p(t), ~ε = (ε, 0 . . . , 0).

Theorem (Malkin, Kuramoto)

For weak perturbations, |ε| � 1, the phase function satisfies

θ̇ =
1

T0
+

1

T0
ε∇θ(γ(t)) · p(t) + o(ε).

We will deal with brief “delta” stimuli, p(t) = δ(t − ts), but it also
works for p(t) stochastic, synaptic couplings,...

One defines the infinitesimal PRC as: iPRC (θ)(x)) = ∇θ(x).p(t)



PRCs: a quick review of “classical” theory

The adjoint method

[see Malkin 1949-1956, Ermentrout and Kopell 1991, Hoppensteadt and
Izhikevich 1997, Ermentrout 2002, Izhikevich 2007,. . . ]

The iPRC can be obtained by solving a variational equation.

The function ∇θ along the limit cycle (the PRC) is given by the
T -periodic solution of the adjoint equation

dQ

dt
= −DX T (γ(t))Q, (1)

where φt is the flow of the vector field X , with the condition

Q(γ(t)) · X (γ(t)) =
1

T

See also [Schultheiss-Prinz-Butera, Phase Response Curves in
Neuroscience; Theory, Experiment, and Analysis, Springer 2012].



PRCs: a quick review of “classical” theory

iPRC and synchronization under weak coupling I

iPRC have been successfully applied to systems of n weakly-coupled
oscillators:

ẋi = fi (xi ) + ε

n∑
j=1

gij(xi , xj),

Phase reductions:

θ̇i = 1 + ε∇θi (γi (t)) ·
n∑

j=1

gij(xi (θi ), xj(θj)) + o(ε).

Defining ϕi = θi − t,

ϕ̇i = ε∇θi (γi (t)) ·
n∑

j=1

gij(xi (t + ϕi ), xj(t + ϕj)) + o(ε).



PRCs: a quick review of “classical” theory

iPRC and synchronization under weak coupling II

Averaging last equation, one obtains:

ϕ̇i = εωi + ε ·
n∑

j 6=i

Hi ,j(ϕj − ϕi ) + o(ε),

where

Hij(ϕj − ϕi ) =
1

T

∫ T

0
∇θi (γi (t))gij(xi (t), xj(t + ϕj − ϕi )).



PRCs: a quick review of “classical” theory

Beyond the phase reduction

In realistic situations, we cannot determine whether we are on a limit cycle.

Regular spiking, but it is not perfect, specially because of noise.

Perturbations may send the dynamics away from the asymptotic
state; then, the rate of convergence to the attractor plays an
important role as well as the stimulation frequency ωs . Other
phenomena like bursting-like stimuli,. . .



PRCs: a quick review of “classical” theory

Beyond the phase reduction: QUESTION 1

Assuming an underlying periodic attractor,

How is the phase variation out of it (that is, in transient states)?
Can we rely on the phase reduction (PRC)?

[Netoff et al., 2005]

−→ Extension of PRCs to a neighbourhood of a limit cycle.



PRCs: a quick review of “classical” theory

Beyond the phase reduction: QUESTION 2

How far is the experimentally recorded phase variation from the
theoretically predicted one?

−→ Comparison of 1D and 2D phase maps with the exact phase
(academic examples).



PRCs: a quick review of “classical” theory

Beyond the phase reduction: QUESTION 3

Experimentally, one is able to compute the phase variation thanks to
references with some specific membrane potential values (e.g.
v(t) = Vmax), but this might not be a good reference for the exact period.

How could we make the most of experimental data to refine the
phase variation computation?

−→ New proposals using iterative recordings and the notion of
isochrons.



PRCs: a quick review of “classical” theory

Beyond the phase reduction: QUESTION 4

How can we extend the PRCs to other attracting sets?

−→ Bistability case, tori, non-smooth,...



Extensions of PRCs. . .

QUESTION 1: Extensions of PRCs: the “Phase Response
Surfaces”

How is the phase variation out of it (that is, in transient states)?
Can we rely on the phase reduction (PRC)?

−→ Extension of PRCs to a neighbourhood of a limit cycle.
[G-Huguet, SIADS 2009]



Extensions of PRCs. . .

Application of the parameterization method

The parameterization method ([Cabré, Fontich, de la Llave, JDE 2005])
for hyperbolic periodic orbits of planar vector fields

We fix X and look for a map K such that(
1

T
∂θ +

λσ

T
∂σ

)
K (θ, σ) = X (K (θ, σ)), (2)

where λ is the characteristic exponent of γ.

X : motion generated by X
expressed in (θ, σ):

θ̇ = 1/T ,

σ̇ = λσ/T .



Extensions of PRCs. . .

Computing the isochrons and PRSs (or 2D-PRCs) I

K , and λ allow us to compute isochrons and Phase Resetting Surfaces
(PRS). We skip here numerical details, which are the core of [G-Huguet,
SIADS 2009]. See also [Osinga-Moehlis, SIADS 2010] for another
approach.

Computing the isochron. The orbit of the points given by K (θ0, σ),
for any σ ∈ U approaches exponentially fast the orbit of the point
K (θ0, 0) = γ(θ0).

Parameterization of the isochron of the point γ(θ0):

K (θ0, ·) : U ⊂ R −→ R2

σ 7−→ K (θ0, σ)



Extensions of PRCs. . .

Computing the isochrons and PRSs (or 2D-PRCs) II

Computing the PRS. Natural extension: for any p = K (θ, σ) in a
neighbourhood of the limit cycle γ, compute:

∇ϑ(p) =

(
∂ϑ

∂x
(p),

∂ϑ

∂y
(p)

)
.

∇ϑ(p) has the same direction as Y⊥(p), where

Y (p) = Y (K (θ, σ)) := ∂σK (θ, σ).

We add some normalization. For a trajectory φt(p), p ∈ Ω we have

dϑ

dt
(φt(p)) = 1/T ,

therefore

dϑ

dt
(φt(p)) = ∇ϑ(φt(p)) · d

dt
φt(p) = ∇ϑ(φt(p)) · X (φt(p)) = 1/T ,



Extensions of PRCs. . .

Computing the isochrons and PRSs (or 2D-PRCs) III

The PRS for any p ∈ Ω is given by

∇ϑ(p) =
Y⊥(p)

T < Y⊥(p),X (p) >



Extensions of PRCs. . .

The adjoint method extended

The function ∇ϑ along the orbits of the vector field X ,

∇ϑ(φt(p)) =
Y⊥(φt(p))

T < Y⊥(φt(p)),X (φt(p)) >

satisfies the adjoint equation

dQ

dt
= −DX T (φt(p))Q,

where φt is the flow of the vector field X , with the initial condition

Q(0) =
Y⊥(p)

T < Y⊥(p),X (p) >
.

PRC: p ∈ γ, then φt(p) = γ(t/T ) with γ(0) = p



Extensions of PRCs. . .

Computing the normal direction resetting surface, PRSσ

Similarly as we did for the ∇ϑ, given the function K we can compute

∇σ(p) =
Z⊥(p)

T
λσ < Z⊥(p),X (p) >

=
Z⊥(p)

< Z⊥(p),Y (p) >
,

where
Z (p) = Z (K (θ, σ)) = ∂θK (θ, σ).

Remark: We use the notation PRSθ to denote the Phase Resetting
Surface and PRSσ to denote the Normal Resetting Surface.

PRSσ = ∇σ(p) · A

is the first-order normal direction variation after applying stimulus
A on p ∈ Ω.



Extensions of PRCs. . .

Summarizing. . .

“Classical version”: PRC on γ ∼= S1.

“Extended version”: PRSθ and PRSσ on Ω ∼= S1 × (σlow , σup), with
0 ∈ (σlow , σup).



Extensions of PRCs. . .

Examples of isochrons and extended PRCs



Extensions of PRCs. . .

A “minimal” example

Consider the system in polar coordinates,{
ṙ = α r(1− r 2),

φ̇ = 1 + α a r 2,

having a limit cycle γ of period T0 = 2π/(1 + α a), parameterized by
θ ∈ [0, 1) as γ(θ) = (cos(2πθ), sin(2πθ)). Then,

K (θ, σ) =

(√
1

1− 2ασ
cos(Ω),

√
1

1− 2ασ
sin(Ω)

)
,

having defined Ω := 2πθ + 1
2 a ln(1− 2ασ).

Finally, we have

PRSθ(K (θ, σ)) = −
√

1−2ασ
2π (sin(Ω)− a cos(Ω))

PRSσ(K (θ, σ)) = (1−2ασ)3/2

α cos(Ω).



Extensions of PRCs. . .

The van der Pol oscillator
{

ẋ = x − x3 − y ,
ẏ = x ,



Extensions of PRCs. . .

The van der Pol oscillator

Figure: The Van der Pol oscillator. Notice the diversity of phase advancements
that can be obtained in the same isochron (three isochrons are shown:
θ = 0.625, 0.672, 0.781).



Extensions of PRCs. . .

2D Hodgkin-Huxley-like systems

The model considered is an IK + INa-model

V̇ = − 1

Cm
(gNam∞(V )(V − VNa) + gK n(V − VK ) + gL(V − VL)− Iapp)

ṅ = n∞(V )− n

where

m∞(V ) =
1

1 + e−(V−Vmax,n)/km

n∞(V ) =
1

1 + e−(V−Vmax,m)/kn

and the parameters are

Cm = 1., gNa = 20.,VNa = 60., gK = 10.,VK = −90., gL = 8., vL = −80.

Vmax ,m = −20., km = 15.,Vmax ,n = −25., kn = 5.



Extensions of PRCs. . .

HH close to a Hopf bif. (Type II PRCs): 1D-PRCs



Extensions of PRCs. . .

HH close to a Hopf bif. (Type II PRCs): 2D-PRCs



Extensions of PRCs. . .

HH close to a SNIC bif. (Type I PRCs): 1D-PRCs



Extensions of PRCs. . .

HH close to a SNIC bif. (Type I PRCs): 2D-PRCs



Poincaré phase maps extended

QUESTION 2: Poincaré phase maps extended

How far is the experimentally recorded phase variation from the
theoretically predicted one?

−→ Comparison of 1D and 2D phase maps with the exact phase
(academic examples).

Experimentally, one is able to compute the phase variation thanks to
references with some specific membrane potential values (e.g.
v(t) = Vmax), but this might not be a good reference for the exact period.



Poincaré phase maps extended

Poincaré phase map

We stimulate an orbit of period T0 and characteristic exponent λ with
pulses of period Ts << T0 in a neighbourhood of a limit cycle γ.
The new phase just before the j-th stimulus can be obtained recurrently
through the Poincaré phase map:

PRC θj = θj−1 + PRC (θj−1) + Ts/T0 mod(1),

with PRC (θ) = ∇θ · A.



Poincaré phase maps extended

The relevance of PRSs vs PRCs

With our extension, we can consider both:

1D-PRCs θj = θj−1 + PRC (θj−1) + Ts/T0,

PRS, 2D-PRCs

{
θj = θj−1 + PRSθ(θj−1, σj−1) + Ts/T0,
σj = (σj−1 + PRSσ(θj−1, σj−1)) exp(λTs/T0),

This allows to compare Poincaré maps for 1D-PRCs with those for
2D-PRCs. Preliminary examples have shown notable differences: phase
locking at different phase, phase loocking vs periodic orbits in phase,. . .



Poincaré phase maps extended

Theoretically expected errors

||∇ϑ(p) · A−∇θ(p0) · A|| = |σ| ||K2(θ0) · J A||+ o(σ),

where J =

(
0 −1
1 0

)
and K (θ, σ) =

∑
j≥0

Kj(θ)σj .

So, we proof a quite intuitive
statement: the curvature of the
isochrons directly affects the errors
in using the PRC, which are
magnified according to the relative
position of the curvature vector with
respect to the stimulus direction.
In neuron models, the first
component of the curvature of the
isochrons.



Poincaré phase maps extended

A “minimal” example

Consider the system in polar coordinates,{
ṙ = α r(1− r 2),

φ̇ = 1 + α a r 2,

having a limit cycle γ of period T0 = 2π/(1 + α a), parameterized by
θ ∈ [0, 1) as γ(θ) = (cos(2πθ), sin(2πθ)). Then,

K (θ, σ) =

(√
1

1− 2ασ
cos(Ω),

√
1

1− 2ασ
sin(Ω)

)
,

having defined Ω := 2πθ + 1
2 a ln(1− 2ασ).

Finally, we have

PRSθ(K (θ, σ)) = −
√

1−2ασ
2π (sin(Ω)− a cos(Ω))

PRSσ(K (θ, σ)) = (1−2ασ)3/2

α cos(Ω).



Poincaré phase maps extended

Varying the stimulus frequency, ωs

Parameter values for the initial simulation: xini = 0, yini = 1.5,
|A| = 0.05, α = 0.1 (weak hyperbolicity), a = 10.

Figure: ωs/ω0 ∈ {20, 10, 5}. We observe that, as we increase the stimulus
frequency, the validity of the iPRC is lost, whereas the extended iPRC still gives
good predictions.



Poincaré phase maps extended

Varying the stimulus amplitude, |A|

Parameter values for the initial simulation: xini = 0, yini = 1.5,
ωs/ω0 = 20, α = 0.1 (weak hyperbolicity), a = 10.

Figure: |A| ∈ {0.01, 0.05, 0.1}. We observe that as we increase the stimulus, the
validity of the iPRC is lost, whereas the extended iPRC still gives good
predictions.



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.01005310

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.01099560

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.01193810

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.01288050

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.01382300

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.01476550

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.01570800

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.06283190

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.07225660

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.08168140

Figure:



Poincaré phase maps extended

Varying the stimulus amplitude, |A|, for Ts = 0.09110620

Figure:



Poincaré phase maps extended

Rotation numbers

Comparison between rotation numbers of 1D-PRCs and analytic
extended PRCs vs. the “exact” ones: relative error of the 1D approach,
e1.



Poincaré phase maps extended

Rotation numbers

Comparison between rotation numbers of 1D-PRCs and analytic
extended PRCs vs. the “exact” ones: relative error of the 1D approach,
e2.



Poincaré phase maps extended

Rotation numbers

Comparison between rotation numbers of 1D-PRCs and 2D-PRCs vs.
the “exact” ones: e2/e1.
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