Symplectic Surface Diffeomorphisms

John Franks

Department of Mathematics Northwestern University

NTDS, Salou Spain Oct. 4, 2012

John Franks Symplectic Surface Diffeomorphisms

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Joint Work with Michael Handel

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Suppose *M* is a compact connected oriented surface.

Definition

Diff^{*r*}(*M*) denotes the *C^{<i>r*} diffeomorphisms isotopic to the identity; if $r = \omega$ this denotes real analytic diffeos. Symp^{*r*}_{μ}(*M*) denotes the symplectic diffeos, the subgroup of Diff^{*r*}(*M*) which preserve the volume form μ .

ヘロト ヘアト ヘビト ヘビト

Theorem

Suppose M is a compact oriented surface of genus 0 and G is a subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$. Suppose further that G has an infinite normal solvable subgroup. Then G is virtually abelian.

Corollary

Suppose M is a compact surface of genus 0 and G is a solvable subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$, then G is virtually abelian.

・ロト ・ 理 ト ・ ヨ ト ・

Theorem

Suppose M is a compact oriented surface of genus 0 and G is a subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$. Suppose further that G has an infinite normal solvable subgroup. Then G is virtually abelian.

Corollary

Suppose M is a compact surface of genus 0 and G is a solvable subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$, then G is virtually abelian.

ヘロト ヘアト ヘビト ヘビト

We will denote by Cent^r(f), the centralizer of f, the subgroup of Diff^r(M) whose elements commute with f, and by Cent^r_µ(f) the subgroup of Symp^r_µ(M) whose elements commute with f.

Corollary (F - Handel)

Suppose $f \in \text{Symp}_{\mu}^{\omega}(S^2)$ has infinite order, then $\text{Cent}_{\mu}^{\omega}(f)$, the centralizer of f in $\text{Symp}_{\mu}^{\omega}(S^2)$ is virtually abelian.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

We will denote by Cent^r(f), the centralizer of f, the subgroup of Diff^r(M) whose elements commute with f, and by Cent^r_µ(f) the subgroup of Symp^r_µ(M) whose elements commute with f.

Corollary (F - Handel)

Suppose $f \in \text{Symp}_{\mu}^{\omega}(S^2)$ has infinite order, then $\text{Cent}_{\mu}^{\omega}(f)$, the centralizer of f in $\text{Symp}_{\mu}^{\omega}(S^2)$ is virtually abelian.

イロト イポト イヨト イヨト 三日

The C^1 generic $f \in \text{Diff}^{(M)}$ has infinite cyclic centralizer.

Theorem (Farb-Shalen)

Suppose $f \in \text{Diff}^{\omega}(S^1)$ has infinite order, then $\text{Cent}^{\omega}(f)$, the centralizer of f in $\text{Diff}^{\omega}(M)$, is virtually abelian.

Question

Suppose *M* is a closed surface and $f \in \text{Diff}^{\omega}(M)$ has infinite order. Then is its centralizer, Cent^{ω}(*f*), always virtually abelian?

Our second Corollary answers this in the case $f \in \operatorname{Symp}_{\mu}^{\omega}(M)$

ヘロト ヘワト ヘビト ヘビト

The C^1 generic $f \in \text{Diff}^{(M)}$ has infinite cyclic centralizer.

Theorem (Farb-Shalen)

Suppose $f \in \text{Diff}^{\omega}(S^1)$ has infinite order, then $\text{Cent}^{\omega}(f)$, the centralizer of f in $\text{Diff}^{\omega}(M)$, is virtually abelian.

Question

Suppose *M* is a closed surface and $f \in \text{Diff}^{\omega}(M)$ has infinite order. Then is its centralizer, Cent^{ω}(*f*), always virtually abelian?

Our second Corollary answers this in the case $f \in \text{Symp}_{\mu}^{\omega}(M)$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The C^1 generic $f \in \text{Diff}^{(M)}$ has infinite cyclic centralizer.

Theorem (Farb-Shalen)

Suppose $f \in \text{Diff}^{\omega}(S^1)$ has infinite order, then $\text{Cent}^{\omega}(f)$, the centralizer of f in $\text{Diff}^{\omega}(M)$, is virtually abelian.

Question

Suppose *M* is a closed surface and $f \in \text{Diff}^{\omega}(M)$ has infinite order. Then is its centralizer, $\text{Cent}^{\omega}(f)$, always virtually abelian?

Our second Corollary answers this in the case $f \in \text{Symp}_{\mu}^{\omega}(M)$

ヘロン ヘアン ヘビン ヘビン

The C^1 generic $f \in \text{Diff}^{(M)}$ has infinite cyclic centralizer.

Theorem (Farb-Shalen)

Suppose $f \in \text{Diff}^{\omega}(S^1)$ has infinite order, then $\text{Cent}^{\omega}(f)$, the centralizer of f in $\text{Diff}^{\omega}(M)$, is virtually abelian.

Question

Suppose M is a closed surface and $f \in \text{Diff}^{\omega}(M)$ has infinite order. Then is its centralizer, $\text{Cent}^{\omega}(f)$, always virtually abelian?

Our second Corollary answers this in the case $f \in \operatorname{Symp}_{\mu}^{\omega}(M)$

- G contains an element of positive entropy
- *G* contains an element *f* which is multi-rotational, i.e. if $M = S^2$, then *f* has entropy 0 and at least three periodic points.
- *G* is a pseudo-rotation group.

These exhaust the possibilities.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- G contains an element of positive entropy
- *G* contains an element *f* which is multi-rotational, i.e. if $M = S^2$, then *f* has entropy 0 and at least three periodic points.
- *G* is a pseudo-rotation group.

These exhaust the possibilities.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- G contains an element of positive entropy
- *G* contains an element *f* which is multi-rotational, i.e. if $M = S^2$, then *f* has entropy 0 and at least three periodic points.
- *G* is a pseudo-rotation group.

These exhaust the possibilities.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- G contains an element of positive entropy
- *G* contains an element *f* which is multi-rotational, i.e. if $M = S^2$, then *f* has entropy 0 and at least three periodic points.
- *G* is a pseudo-rotation group.

These exhaust the possibilities.

(雪) (ヨ) (ヨ)

- G contains an element of positive entropy
- *G* contains an element *f* which is multi-rotational, i.e. if $M = S^2$, then *f* has entropy 0 and at least three periodic points.
- *G* is a pseudo-rotation group.

These exhaust the possibilities.

通 と く ヨ と く ヨ と

Theorem (Katok)

Suppose $f \in \text{Diff}^{1+\epsilon}(M^2)$ has positive topological entropy. Then there is a hyperbolic periodic point p for f with a transversal homoclinic point.

Corollary (Katok)

Suppose $f \in \text{Diff}^2(M^2)$ has positive topological entropy, then Cent^{ω}(*f*), the centralizer of *f* in Diff^{ω}(*M*), is virtually cyclic. Moreover, every infinite order element of Cent^{ω}(*f*) has positive topological entropy.

イロト 不得 とくほと くほとう

ъ

Theorem (Katok)

Suppose $f \in \text{Diff}^{1+\epsilon}(M^2)$ has positive topological entropy. Then there is a hyperbolic periodic point p for f with a transversal homoclinic point.

Corollary (Katok)

Suppose $f \in \text{Diff}^2(M^2)$ has positive topological entropy, then Cent^{ω}(*f*), the centralizer of *f* in $\text{Diff}^{\omega}(M)$, is virtually cyclic. Moreover, every infinite order element of $\text{Cent}^{\omega}(f)$ has positive topological entropy.

ヘロト 人間 とくほ とくほ とう

Proof of Corollary

Lemma

Suppose $f \in \text{Diff}^2(M^2)$, $g \in \text{Cent}^2(f)$, and f has a hyperbolic fixed point p of saddle type. If g fixes p and preserves the branches of $W^s(p, f)$, then there is a C^1 coordinate function t on $W^s(p, f)$ and a unique number $\alpha > 0$ such that in these coordinates $g(t) = \alpha t$. In particular α is an eigenvalue of Dg_p .

Proof.

Sternberg linearization says there is a C^1 coordinate function t on $W^s(p, f)$ in which $f(t) = \lambda t$. Then if $a \in Cent^2(f)$

$$g(t) = \lambda^{-n} g(\lambda^n t),$$

$$g'(t) = g'(\lambda^n t) = g'(0).$$

Proof of Corollary

Lemma

Suppose $f \in \text{Diff}^2(M^2)$, $g \in \text{Cent}^2(f)$, and f has a hyperbolic fixed point p of saddle type. If g fixes p and preserves the branches of $W^s(p, f)$, then there is a C^1 coordinate function t on $W^s(p, f)$ and a unique number $\alpha > 0$ such that in these coordinates $g(t) = \alpha t$. In particular α is an eigenvalue of Dg_p .

Proof.

Sternberg linearization says there is a C^1 coordinate function t on $W^s(p, f)$ in which $f(t) = \lambda t$. Then if $g \in Cent^2(f)$,

$$g(t) = \lambda^{-n} g(\lambda^n t),$$

 $g'(t) = g'(\lambda^n t) = g'(0).$

Proof of Corollary

Lemma

Suppose $f \in \text{Diff}^2(M^2)$, $g \in \text{Cent}^2(f)$, and f has a hyperbolic fixed point p of saddle type. If g fixes p and preserves the branches of $W^s(p, f)$, then there is a C^1 coordinate function t on $W^s(p, f)$ and a unique number $\alpha > 0$ such that in these coordinates $g(t) = \alpha t$. In particular α is an eigenvalue of Dg_p .

Proof.

Sternberg linearization says there is a C^1 coordinate function t on $W^s(p, f)$ in which $f(t) = \lambda t$. Then if $g \in Cent^2(f)$,

$$g(t) = \lambda^{-n} g(\lambda^n t),$$

so

$$g'(t) = g'(\lambda^n t) = g'(0).$$

Let $Cent^{r}(f, p)$ denote the subgroup of $Cent^{r}(f)$ whose elements fix p and preserve branches of $W^{s}(f, p)$. The expansion factor homomorphism

 $\phi: Cent^{r}(f, p) \to \mathbb{R}^{+},$

is defined by $\phi(g) = \alpha$ where α is the number for which $g(x) = \alpha x$ It is a homomorphism.

To prove the corollary we need only show that ϕ is injective and it has discrete image.

ヘロト ヘアト ヘビト ヘビト

Let $Cent^{r}(f, p)$ denote the subgroup of $Cent^{r}(f)$ whose elements fix p and preserve branches of $W^{s}(f, p)$. The expansion factor homomorphism

 $\phi: Cent^{r}(f, p) \to \mathbb{R}^{+},$

is defined by $\phi(g) = \alpha$ where α is the number for which $g(x) = \alpha x$ It is a homomorphism.

To prove the corollary we need only show that ϕ is injective and it has discrete image.

ヘロン 人間 とくほ とくほ とう

- If $\phi(h) = 1$, then $W^{s}(f, p) \subset Fix(h)$.
- The set of fixed points of an analytic diffeomorphism $h: M^2 \to M^2$ is an analytic set which implies it has finitely many components and its complement has finitely many components (this is true even in a chart).
- Hence h = id.

ヘロト 人間 ト ヘヨト ヘヨト

- If $\phi(h) = 1$, then $W^{s}(f, p) \subset Fix(h)$.
- The set of fixed points of an analytic diffeomorphism $h: M^2 \rightarrow M^2$ is an analytic set which implies it has finitely many components and its complement has finitely many components (this is true even in a chart).
- Hence h = id.

ヘロト 人間 ト ヘヨト ヘヨト

- If $\phi(h) = 1$, then $W^{s}(f, p) \subset Fix(h)$.
- The set of fixed points of an analytic diffeomorphism
 h: M² → M² is an analytic set which implies it has finitely
 many components and its complement has finitely many
 components (this is true even in a chart).

• Hence h = id.

イロト イポト イヨト イヨト 三日

- If $\phi(h) = 1$, then $W^{s}(f, p) \subset Fix(h)$.
- The set of fixed points of an analytic diffeomorphism
 h: M² → M² is an analytic set which implies it has finitely
 many components and its complement has finitely many
 components (this is true even in a chart).
- Hence h = id.

ヘロト 人間 とくほ とくほ とう

Suppose *M* is a compact genus zero surface and $f \in \text{Symp}_{\mu}^{\infty}(M)$ and that the number of periodic points of *f* is greater than the Euler characteristic of *M*. If *f* has infinite order and entropy 0, we will call it a multi-rotational diffeomorphism. This set of diffeomorphisms will be denoted $\mathcal{Z}(M)$.

Definition

Annular compactification of an annulus U: There is a dynamically compatible compactification of any f-invariant annulus. It is the blowup on an end whose frontier is a single point and the prime end compactification otherwise.

ヘロン ヘアン ヘビン ヘビン

Suppose *M* is a compact genus zero surface and $f \in \text{Symp}_{\mu}^{\infty}(M)$ and that the number of periodic points of *f* is greater than the Euler characteristic of *M*. If *f* has infinite order and entropy 0, we will call it a multi-rotational diffeomorphism. This set of diffeomorphisms will be denoted $\mathcal{Z}(M)$.

Definition

Annular compactification of an annulus U: There is a dynamically compatible compactification of any f-invariant annulus. It is the blowup on an end whose frontier is a single point and the prime end compactification otherwise.

ヘロン ヘアン ヘビン ヘビン

Theorem (F - Handel)

Suppose $f \in \operatorname{Symp}_{\mu}^{\infty}(S^2)$ has infinite order, entropy 0, and at least three periodic points (i.e., f is multi-rotational). Let $\mathcal{A} = \mathcal{A}_f$ be the collection of maximal f-invariant open annuli in $S^2 \setminus \operatorname{Fix}(f)$, then

- The elements of A are pairwise disjoint.
- 2 The union $\bigcup_{U \in \mathcal{A}} U$ is a full measure dense open subset of $S^2 \setminus Fix(f)$.
- Each component of the frontier of U in S² contains a fixed point.
- The rotation number ρ_f : U_c → S¹ is continuous and non-constant. Each component of the level set of ρ_f which is disjoint from ∂U_c is essential in U, i.e. separates the components of ∂U_c.

Theorem (F - Handel)

Suppose $f \in \text{Symp}_{\mu}^{\infty}(S^2)$ has infinite order, entropy 0, and at least three periodic points (i.e., f is multi-rotational). Let $\mathcal{A} = \mathcal{A}_f$ be the collection of maximal f-invariant open annuli in $S^2 \setminus \text{Fix}(f)$, then

- The elements of A are pairwise disjoint.
- 2 The union $\bigcup_{U \in \mathcal{A}} U$ is a full measure dense open subset of $S^2 \setminus Fix(f)$.
- Each component of the frontier of U in S² contains a fixed point.
- The rotation number ρ_f : U_c → S¹ is continuous and non-constant. Each component of the level set of ρ_f which is disjoint from ∂U_c is essential in U, i.e. separates the components of ∂U_c.

Theorem (F - Handel)

Suppose $f \in \text{Symp}_{\mu}^{\infty}(S^2)$ has infinite order, entropy 0, and at least three periodic points (i.e., f is multi-rotational). Let $\mathcal{A} = \mathcal{A}_f$ be the collection of maximal f-invariant open annuli in $S^2 \setminus \text{Fix}(f)$, then

- The elements of A are pairwise disjoint.
- **2** The union $\bigcup_{U \in \mathcal{A}} U$ is a full measure dense open subset of $S^2 \setminus Fix(f)$.
- Each component of the frontier of U in S² contains a fixed point.
- The rotation number ρ_f : U_c → S¹ is continuous and non-constant. Each component of the level set of ρ_f which is disjoint from ∂U_c is essential in U, i.e. separates the components of ∂U_c.

Theorem (F - Handel)

Suppose $f \in \operatorname{Symp}_{\mu}^{\infty}(S^2)$ has infinite order, entropy 0, and at least three periodic points (i.e., f is multi-rotational). Let $\mathcal{A} = \mathcal{A}_f$ be the collection of maximal f-invariant open annuli in $S^2 \setminus \operatorname{Fix}(f)$, then

- The elements of A are pairwise disjoint.
- 2 The union $\bigcup_{U \in \mathcal{A}} U$ is a full measure dense open subset of $S^2 \setminus Fix(f)$.
- Each component of the frontier of U in S² contains a fixed point.
- The rotation number ρ_f : U_c → S¹ is continuous and non-constant. Each component of the level set of ρ_f which is disjoint from ∂U_c is essential in U, i.e. separates the components of ∂U_c.

Theorem (F - Handel)

Suppose $f \in \operatorname{Symp}_{\mu}^{\infty}(S^2)$ has infinite order, entropy 0, and at least three periodic points (i.e., f is multi-rotational). Let $\mathcal{A} = \mathcal{A}_f$ be the collection of maximal f-invariant open annuli in $S^2 \setminus \operatorname{Fix}(f)$, then

- The elements of A are pairwise disjoint.
- **2** The union $\bigcup_{U \in \mathcal{A}} U$ is a full measure dense open subset of $S^2 \setminus Fix(f)$.
- Each component of the frontier of U in S² contains a fixed point.
- The rotation number ρ_f : U_c → S¹ is continuous and non-constant. Each component of the level set of ρ_f which is disjoint from ∂U_c is essential in U, i.e. separates the components of ∂U_c.

Maximal Annuli for elements of $\text{Symp}^{\infty}_{\mu}(S^2)$

Three Key Properties

- The elements of \mathcal{A} are permuted by any $g \in Cent^{\infty}_{\mu}(f)$.
- The $Cent^{\infty}_{\mu}(f)$ -orbit of any $U \in \mathcal{A}$ is finite.
- If g ∈ Cent[∞]_μ(f) preserves U then it preserves all components of level sets of ρ_f.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Maximal Annuli for elements of $\text{Symp}_u^{\infty}(S^2)$

Three Key Properties

- The elements of \mathcal{A} are permuted by any $g \in Cent^{\infty}_{\mu}(f)$.
- The $Cent^{\infty}_{\mu}(f)$ -orbit of any $U \in \mathcal{A}$ is finite.
- If g ∈ Cent[∞]_μ(f) preserves U then it preserves all components of level sets of ρ_f.

<ロ> (四) (四) (三) (三) (三)

Maximal Annuli for elements of $\text{Symp}^{\infty}_{\mu}(S^2)$

Three Key Properties

- The elements of \mathcal{A} are permuted by any $g \in Cent^{\infty}_{\mu}(f)$.
- The $Cent^{\infty}_{\mu}(f)$ -orbit of any $U \in \mathcal{A}$ is finite.
- If g ∈ Cent[∞]_μ(f) preserves U then it preserves all components of level sets of ρ_f.

(1) マン・ション (1) マン・

If $f : A \to A$ is a closed annulus let $\Delta_f(x) = p_1(\tilde{f}(\tilde{x})) - p_1(\tilde{x})$. Then the mean rotation number ρ_μ : Homeo_{μ}(A) $\to S^1$ is the coset mod \mathbb{Z} of

 $\int_A \Delta_f(x) \ d\mu.$

It is the average rotation number or the "flux" across a line joining the two boundary components of *A*. It is a homomorphism and hence if $h = [g_1, g_2]$ for some $g_i : A \to A$ then $\rho_{\mu}(h) = 0$.

Theorem

If $\rho_{\mu}(f) = 0$ then f has a fixed point in the interior of A.

ヘロン 人間 とくほ とくほ とう

Theorem (F - Handel)

Suppose f is multi-rotational. Then $Cent^{\omega}_{\mu}(f)$, the centralizer of f in $Symp^{\omega}_{\mu}(S^2)$ is virtually abelian.

Proof:

- By the structure theorem for multi-rotational *f* there is *U* ∈ A(*f*). Let *Cent*(*U*) be the (finite index) stabilizer of *U* in *Cent*^ω_μ(*f*).
- 2) Let $g_1, g_2 \in Cent(U)$ and let $h = [g_1, g_2]$. We will contradict $h \neq id$ by showing Fix(h) has infinitely many components. This will show Cent(U) is abelian.

ヘロン 人間 とくほ とくほ とう

Theorem (F - Handel)

Suppose f is multi-rotational. Then $Cent^{\omega}_{\mu}(f)$, the centralizer of f in $Symp^{\omega}_{\mu}(S^2)$ is virtually abelian.

Proof:

- By the structure theorem for multi-rotational *f* there is *U* ∈ A(*f*). Let *Cent*(*U*) be the (finite index) stabilizer of *U* in *Cent*^ω_μ(*f*).
- 2) Let $g_1, g_2 \in Cent(U)$ and let $h = [g_1, g_2]$. We will contradict $h \neq id$ by showing Fix(h) has infinitely many components. This will show Cent(U) is abelian.

ヘロト 人間 とくほ とくほ とう

Theorem (F - Handel)

Suppose f is multi-rotational. Then $Cent^{\omega}_{\mu}(f)$, the centralizer of f in $Symp^{\omega}_{\mu}(S^2)$ is virtually abelian.

Proof:

- By the structure theorem for multi-rotational *f* there is *U* ∈ A(*f*). Let *Cent*(*U*) be the (finite index) stabilizer of *U* in *Cent*^ω_μ(*f*).
- 2) Let $g_1, g_2 \in Cent(U)$ and let $h = [g_1, g_2]$. We will contradict $h \neq id$ by showing Fix(h) has infinitely many components. This will show Cent(U) is abelian.

ヘロト 人間 とくほ とくほ とう

- 3) Choose components of the level sets of ρ_f , $C_1, C_2, ...$ satisfying
 - For each i, $\rho_f(C_i)$ is irrational.
 - For each *i*, C_i separates C_{i+1} from $\bigcup_{i < i} C_i$.
- 4) Let A_i denote the open subannulus of U whose frontier is $C_i \cup C_{i+1}$. Then A_i is Cent(U)-invariant and hence h has a fixed point in A_i (since h is the commutator of $g_1, g_2 : A_i \to A_i$).
- 5) Choose a $V \in \mathcal{A}(h)$ which intersects A_i and let W be a component of $V \cap A_i$. There are three subcases each of which leads to a contradiction:
 - (a) W is a disk;
 - (b) W is essential in A_i ;
 - (c) W is an inessential annulus in A_i .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- 3) Choose components of the level sets of ρ_f , $C_1, C_2, ...$ satisfying
 - For each i, $\rho_f(C_i)$ is irrational.
 - For each *i*, C_i separates C_{i+1} from $\bigcup_{i < i} C_i$.
- 4) Let A_i denote the open subannulus of U whose frontier is $C_i \cup C_{i+1}$. Then A_i is Cent(U)-invariant and hence h has a fixed point in A_i (since h is the commutator of $g_1, g_2 : A_i \to A_i$).
- 5) Choose a $V \in \mathcal{A}(h)$ which intersects A_i and let W be a component of $V \cap A_i$. There are three subcases each of which leads to a contradiction:
 - (a) W is a disk;
 - (b) W is essential in A_i ;
 - (c) W is an inessential annulus in A_i .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- 3) Choose components of the level sets of ρ_f , $C_1, C_2, ...$ satisfying
 - For each i, $\rho_f(C_i)$ is irrational.
 - For each *i*, C_i separates C_{i+1} from $\bigcup_{i < i} C_i$.
- 4) Let A_i denote the open subannulus of U whose frontier is $C_i \cup C_{i+1}$. Then A_i is Cent(U)-invariant and hence h has a fixed point in A_i (since h is the commutator of $g_1, g_2 : A_i \to A_i$).
- 5) Choose a $V \in \mathcal{A}(h)$ which intersects A_i and let W be a component of $V \cap A_i$. There are three subcases each of which leads to a contradiction:
 - (a) W is a disk;
 - (b) W is essential in A_i ;
 - (c) W is an inessential annulus in A_i.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- 3) Choose components of the level sets of ρ_f , $C_1, C_2, ...$ satisfying
 - For each i, $\rho_f(C_i)$ is irrational.
 - For each *i*, C_i separates C_{i+1} from $\bigcup_{i < i} C_i$.
- 4) Let A_i denote the open subannulus of U whose frontier is $C_i \cup C_{i+1}$. Then A_i is Cent(U)-invariant and hence h has a fixed point in A_i (since h is the commutator of $g_1, g_2 : A_i \to A_i$).
- 5) Choose a $V \in \mathcal{A}(h)$ which intersects A_i and let W be a component of $V \cap A_i$. There are three subcases each of which leads to a contradiction:
 - (a) W is a disk;
 - (b) W is essential in A_i ;
 - (c) W is an inessential annulus in A_i.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Suppose *M* is a compact oriented surface with Euler characteristic $\mathfrak{X}(M) \ge 0$, i.e. *M* is S^2 , \mathbb{A} or D^2 . *A* pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^r(M)$ with $r \ge 1$, is a subgroup *G* with the property that every non-trivial element of *G* has exactly $\mathfrak{X}(M)$ fixed points.

One can show that if $M = \mathbb{A}$ or D^2 then any pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^{r}(M)$ is abelian.

Question

Must a pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^{\omega}(S^2)$ be conjugate to a subgroup of SO(3)? Must a pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^{\omega}(S^2)$ be isomorphic to a subgroup of SO(3)?

Suppose *M* is a compact oriented surface with Euler characteristic $\mathfrak{X}(M) \ge 0$, i.e. *M* is S^2 , \mathbb{A} or D^2 . *A* pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^r(M)$ with $r \ge 1$, is a subgroup *G* with the property that every non-trivial element of *G* has exactly $\mathfrak{X}(M)$ fixed points.

One can show that if $M = \mathbb{A}$ or D^2 then any pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^{r}(M)$ is abelian.

Question

Must a pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^{\omega}(S^2)$ be conjugate to a subgroup of SO(3)? Must a pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^{\omega}(S^2)$ be isomorphic to a subgroup of SO(3)?

Suppose *M* is a compact oriented surface with Euler characteristic $\mathfrak{X}(M) \ge 0$, i.e. *M* is S^2 , \mathbb{A} or D^2 . *A* pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^r(M)$ with $r \ge 1$, is a subgroup *G* with the property that every non-trivial element of *G* has exactly $\mathfrak{X}(M)$ fixed points.

One can show that if $M = \mathbb{A}$ or D^2 then any pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^{r}(M)$ is abelian.

Question

Must a pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^{\omega}(S^2)$ be conjugate to a subgroup of SO(3)? Must a pseudo-rotation subgroup of $\operatorname{Symp}_{\mu}^{\omega}(S^2)$ be isomorphic to a subgroup of SO(3)?

Recall that the Tits alternative is satisfied by a group *G* if every subgroup (or perhaps every finitely generated subgroup) of *G* is either virtually solvable or contains a non-abelian free group. This is a deep property known for finitely generated linear groups and some groups arising in geometric group theory. It is an important open question for $\text{Diff}^{\omega}(S^1)$. (It is not true for $\text{Diff}^{\infty}(S^1)$.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conjecture (Tits alternative)

If *M* is a compact surface then every finitely generated subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$ is either virtually solvable or contains a non-abelian free group.

Theorem

Suppose M is a compact genus zero surface and G is a subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$. If G contains at least one multi-rotational element then either G contains a subgroup isomorphic to F_2 , the free group on two generators, or G has an abelian subgroup of finite index.

ヘロア 人間 アメヨア 人口 ア

Conjecture (Tits alternative)

If *M* is a compact surface then every finitely generated subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$ is either virtually solvable or contains a non-abelian free group.

Theorem

Suppose M is a compact genus zero surface and G is a subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$. If G contains at least one multi-rotational element then either G contains a subgroup isomorphic to F_2 , the free group on two generators, or G has an abelian subgroup of finite index.

ヘロト 人間 ト ヘヨト ヘヨト

THANK YOU!

John Franks Symplectic Surface Diffeomorphisms

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●