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The groups Diffr(M) and Sympr
µ(M)

Suppose M is a compact connected oriented surface.

Definition
Diffr (M) denotes the Cr diffeomorphisms isotopic to the
identity; if r = ω this denotes real analytic diffeos.
Sympr

µ(M) denotes the symplectic diffeos, the subgroup of
Diffr (M) which preserve the volume form µ.
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Normal Solvable Subgroups

Theorem
Suppose M is a compact oriented surface of genus 0 and G is
a subgroup of Sympωµ(M). Suppose further that G has an
infinite normal solvable subgroup. Then G is virtually abelian.

Corollary
Suppose M is a compact surface of genus 0 and G is a
solvable subgroup of Sympωµ(M), then G is virtually abelian.
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Centralizers

Definition

We will denote by Cent r (f ), the centralizer of f , the subgroup of
Diffr (M) whose elements commute with f , and by Cent r

µ(f ) the
subgroup of Sympr

µ(M) whose elements commute with f .

Corollary (F - Handel)

Suppose f ∈ Sympωµ(S2) has infinite order, then Centωµ(f ), the
centralizer of f in Sympωµ(S2) is virtually abelian.
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The Centralizer of f ∈ Diff(M)

Theorem (Bonatti, Crovisier, Wilkinson)

The C1 generic f ∈ Diff(M) has infinite cyclic centralizer.

Theorem (Farb-Shalen)

Suppose f ∈ Diffω(S1) has infinite order, then Centω(f ), the
centralizer of f in Diffω(M), is virtually abelian.

Question
Suppose M is a closed surface and f ∈ Diffω(M) has infinite
order. Then is its centralizer, Centω(f ), always virtually abelian?

Our second Corollary answers this in the case f ∈ Sympωµ(M)
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Three types of structure for f ∈ Symp∞µ (M)

Let M be a compact oriented surface with genus zero and let G
be a subgroup of Symp∞µ (M).

G contains an element of positive entropy
G contains an element f which is multi-rotational, i.e. if
M = S2, then f has entropy 0 and at least three periodic
points.
G is a pseudo-rotation group.

These exhaust the possibilities.
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Positive Entropy

Theorem (Katok)

Suppose f ∈ Diff1+ε(M2) has positive topological entropy. Then
there is a hyperbolic periodic point p for f with a transversal
homoclinic point.

Corollary (Katok )

Suppose f ∈ Diff2(M2) has positive topological entropy, then
Centω(f ), the centralizer of f in Diffω(M), is virtually cyclic.
Moreover, every infinite order element of Centω(f ) has positive
topological entropy.
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Proof of Corollary

Lemma

Suppose f ∈ Diff2(M2), g ∈ Cent2(f ), and f has a hyperbolic
fixed point p of saddle type. If g fixes p and preserves the
branches of W s(p, f ), then there is a C1 coordinate function t
on W s(p, f ) and a unique number α > 0 such that in these
coordinates g(t) = αt . In particular α is an eigenvalue of Dgp.

Proof.

Sternberg linearization says there is a C1 coordinate function t
on W s(p, f ) in which f (t) = λt .
Then if g ∈ Cent2(f ),

g(t) = λ−ng(λnt),

so
g′(t) = g′(λnt) = g′(0).
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Proof of Corollary

Definition

Let Cent r (f ,p) denote the subgroup of Cent r (f ) whose
elements fix p and preserve branches of W s(f ,p). The
expansion factor homomorphism

φ : Cent r (f ,p)→ R+,

is defined by φ(g) = α where α is the number for which
g(x) = αx It is a homomorphism.

To prove the corollary we need only show that φ is injective and
it has discrete image.
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Proof of Corollary

To prove the corollary we need only show that φ is injective and
it has discrete image.

If φ(h) = 1, then W s(f ,p) ⊂ Fix(h).

The set of fixed points of an analytic diffeomorphism
h : M2 → M2 is an analytic set which implies it has finitely
many components and its complement has finitely many
components (this is true even in a chart).
Hence h = id .
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Multi-Rotational Diffeomorphisms

Definition
Suppose M is a compact genus zero surface and
f ∈ Symp∞µ (M) and that the number of periodic points of f is
greater than the Euler characteristic of M. If f has infinite order
and entropy 0, we will call it a multi-rotational diffeomorphism.
This set of diffeomorphisms will be denoted Z(M).

Definition
Annular compactification of an annulus U: There is a
dynamically compatible compactification of any f -invariant
annulus. It is the blowup on an end whose frontier is a single
point and the prime end compactification otherwise.
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The Structure of Multi-Rotational Diffeomorphisms.

Theorem (F - Handel)

Suppose f ∈ Symp∞µ (S2) has infinite order, entropy 0, and at
least three periodic points (i.e., f is multi-rotational). Let A = Af
be the collection of maximal f -invariant open annuli in
S2 \ Fix(f ), then

1 The elements of A are pairwise disjoint.
2 The union

⋃
U∈A

U is a full measure dense open subset of

S2 \ Fix(f ).
3 Each component of the frontier of U in S2 contains a fixed

point.
4 The rotation number ρf : Uc → S1 is continuous and

non-constant. Each component of the level set of ρf which
is disjoint from ∂Uc is essential in U, i.e. separates the
components of ∂Uc .
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Maximal Annuli for elements of Symp∞µ (S2)

Three Key Properties

The elements of A are permuted by any g ∈ Cent∞µ (f ).

The Cent∞µ (f )-orbit of any U ∈ A is finite.

If g ∈ Cent∞µ (f ) preserves U then it preserves all
components of level sets of ρf .
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Mean rotation number

If f : A→ A is a closed annulus let ∆f (x) = p1(f̃ (x̃))− p1(x̃).
Then the mean rotation number ρµ : Homeoµ(A)→ S1 is the
coset mod Z of ∫

A
∆f (x) dµ.

It is the average rotation number or the “flux” across a line
joining the two boundary components of A. It is a
homomorphism and hence if h = [g1,g2] for some gi : A→ A
then ρµ(h) = 0.

Theorem
If ρµ(f ) = 0 then f has a fixed point in the interior of A.
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Theorem (F - Handel)

Suppose f is multi-rotational. Then Centωµ(f ), the centralizer of
f in Sympωµ(S2) is virtually abelian.

Proof:
1) By the structure theorem for multi-rotational f there is

U ∈ A(f ). Let Cent(U) be the (finite index) stabilizer of U
in Centωµ(f ).

2) Let g1,g2 ∈ Cent(U) and let h = [g1,g2]. We will contradict
h 6= id by showing Fix(h) has infinitely many components.
This will show Cent(U) is abelian.
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Proof Cont’d

3) Choose components of the level sets of ρf , C1,C2, . . .
satisfying

For each i , ρf (Ci ) is irrational.
For each i , Ci separates Ci+1 from

⋃
j<i Cj .

4) Let Ai denote the open subannulus of U whose frontier is
Ci ∪ Ci+1. Then Ai is Cent(U)-invariant and hence h has a
fixed point in Ai (since h is the commutator of
g1,g2 : Ai → Ai ).

5) Choose a V ∈ A(h) which intersects Ai and let W be a
component of V ∩ Ai . There are three subcases each of
which leads to a contradiction:

(a) W is a disk;
(b) W is essential in Ai ;
(c) W is an inessential annulus in Ai .
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Pseudo-Rotation Groups

Definition
Suppose M is a compact oriented surface with Euler
characteristic X(M) ≥ 0, i.e. M is S2,A or D2. A
pseudo-rotation subgroup of Sympr

µ(M) with r ≥ 1, is a
subgroup G with the property that every non-trivial element of
G has exactly X(M) fixed points.

One can show that if M = A or D2 then any pseudo-rotation
subgroup of Sympr

µ(M) is abelian.

Question

Must a pseudo-rotation subgroup of Sympωµ(S2) be conjugate to
a subgroup of SO(3)? Must a pseudo-rotation subgroup of
Sympωµ(S2) be isomorphic to a subgroup of SO(3)?
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Tits Alternative

Recall that the Tits alternative is satisfied by a group G if every
subgroup (or perhaps every finitely generated subgroup) of G is
either virtually solvable or contains a non-abelian free group.
This is a deep property known for finitely generated linear
groups and some groups arising in geometric group theory. It is
an important open question for Diffω(S1). (It is not true for
Diff∞(S1).)
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Tits Alternative

Conjecture (Tits alternative)
If M is a compact surface then every finitely generated
subgroup of Sympωµ(M) is either virtually solvable or contains a
non-abelian free group.

Theorem

Suppose M is a compact genus zero surface and G is a
subgroup of Sympωµ(M). If G contains at least one
multi-rotational element then either G contains a subgroup
isomorphic to F2, the free group on two generators, or G has an
abelian subgroup of finite index.
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THANK YOU!
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