
Connectivity of Julia sets, Baker domains
and weakly repelling fixed points

K. Baranski N. Fagella
X. Jarque B. Karpinska

U. Warsaw, U. Barcelona, Warsaw U. Technology

New trends in dynamical systems
Salou, Catalonia

October 1–5, 2012

Baranski, Fagella, Jarque, Karpinska () Baker domains and WRFP Salou, October 2012 1 / 45



Motivation: Newton’s method in the complex plane

Given P(z) a complex polynomial, its Newton’s method is defined as

NP(z) = z − P(z)

P ′(z)
.

NP is a rational map which acts on the Riemann sphere C ∪ {∞}.

As all complex dynamical systems, its phase space decomposes into two
totally invariant sets:

The Fatou set (or stable set): basins of attraction of attracting or
parabolic cycles, Siegel discs (irrational rotation domains) or Herman
rings (irrational rotation annuli).

The Julia set (or chaotic set): the closure of the set of repelling
periodic points (boundary between the different stable regions).
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Newton’s method of polynomials

Newton’s method for P(z) = z(z − 1)(z − a).
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Newton’s method of polynomials

The study of the distribution and topology of these invariant sets has
recently produced efficient algorithms to locate all roots of P. [Hubbard,

Schleicher and Sutherland ’04 ’11].

• An important topological property is the following.

Theorem (Shishikura ’90)

For any polynomial P, all Fatou components of NP are simply connected.
(Equivalently, J (NP) is connected.)

• In particular, there are no Herman rings: only basins and Siegel disks.

• Shishikura’s theorem had a long history with partial results from
Przytycki ’86, Meier ’89, Tan Lei ..... He actually proved a more general
theorem for rational maps, obtaining this as a corollary.
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Newton’s method of entire transcendental maps

Given g(z) an entire transcendental map , i.e., with an essential
singularity at infinity, its Newton’s method

Ng (z) = z − g(z)

g ′(z)
.

is a meromorphic transcendental map.

• It has in general infintiely many poles. Poles and prepoles have finite
orbits, and are dense in the Julia set.

• The Fatou set allows for two extra types of components:

Wandering domains f m(U) ∩ f n(U) = ∅ for all n,m.

Baker domains Sets for which all iterates converge uniformly to ∞.
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Newton’s method of entire transcendental maps

Newton’s method for g(z) = z + ez .

Question: Are all Fatou components simply connected?? Or equivalently,
is the Julia set always connected (in C ∪ {∞})?
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Newton’s method of entire transcendental maps

Newton’s method for g(z) = ez(z + ez).

In black, a Baker domain where iterates tend to −∞.
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Newton’s method of entire transcendental maps

Newton’s method for g(z) = sin(z).
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Goal / Main result

Our goal is to complete the proof of the following more general theorem.
(Mer denotes the class of meromorphic transcendental maps).

Main Theorem

f ∈ Mer
J (f ) is disconnected

=⇒ f has at least one weakly repelling
fixed point.

A weakly repelling fixed point (wrfp) is a fixed point which is repelling or has

multiplier exactly 1.

• Observe that all fixed points of Ng are attracting. Hence Ng has NO
weakly repelling fixed points. This means J (Ng ) is connected, i.e., all its
Fatou components are simply connected.

This theorem can be proved separately for each type of Fatou component.
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Previous results

g entire transcendental; Ng Newton’s method (∈ Mer).

Mayer + Schleicher ’06: Basins of attraction and “virtual immediate
basins” are simply connected.

f ∈ Mer .

Bergweiler + Terglane ’96: case where U is a wandering domain.
F + Jarque + Taixés ’08: case where U is an attracting basins or a
preperiodic comp.
F + Jarque + Taixés ’11: case where U is a parabolic basin.

Cases left: general Baker domains and Herman rings (for both, Newton’s
method and for general meromorphic maps).
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Main results

Theorem A

Suppose f ∈ Mer. If f has a multiply connected cycle of Baker domains,
then f has at least one weakly repelling fixed point.

Theorem B

Suppose f ∈ Mer. If f has a cycle of Herman rings, then f has at least
one weakly repelling fixed point.
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Absorbing regions

Most of the existing results were based on the existence of simply
connected absorbing regions for f .

Definition (Absorbing region)

f ∈ Mer , U invariant Fatou component.
W ⊂ U is absorbing in U for f if f (W ) ⊂W and for every compact set
K ⊂ U there exists n = n(K ) > 0, such that f n(K ) ⊂W .

Examples:

1 Linearization domain (appropriately chosen) around an attracting
fixed point.

2 Attracting petals attached to parabolic fixed points

Strategy: Pull back a s.c. absorbing region until it becomes m.c. Then
apply surgery.
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Absorbing regions in Baker domains
Baker domains, in general, do NOT have simply connected absorbing
regions (König ’99). Existence of any type of absorbing regions was an
open problem.
We prove:

Theorem C (Baker domains have absorbing regions)

Let f ∈ Mer and U be an invariant Baker domain. Then there exists an
absorbing region W ⊂ U, which satisfies:

(a) W ⊂ U,

(b) f n(W ) = f n(W ) ⊂W for every n ≥ 1,

(c)
⋂∞

n=1 f n(W ) = ∅,
Moreover, for every point z ∈ U and every sequence of positive numbers
rn, n ≥ 0 with limn→∞ rn =∞, the domain W can be chosen such that

W ⊂
∞⋃
n=0

DU(F n(z), rn).
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Absorbing regions in Baker domains

Observe that W may be or not be simply connected.

U

W

p
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Absorbing regions in Baker domains

•Theorem C holds for any p−cycle of Baker domains, just taking f p.

• In fact we prove Theorem C in much greater generality, for f defined
only on a hyperbolic domain (in the sense of having D as the universal
covering space).

• We moreover show that on the absorbing region W , the map f is
semiconjugate to one of the Möbius transformations ω + 1, aω with
a > 1 or w ± i .
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Plan

Main Tools.

Finding a wrfp in a multiply connected Baker domain: sketch of proof
of Theorem A (fixed case).

(If there is time) Construction of the absorbing region (sketch of
proof of Theorem C)
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Proof of Theorem A (fixed case). Main tools.

We suppose f has an invariant Baker domain U.
To show that f has a weakly repelling fixed point we use the following
ingredients, (which concentrate a good part of the work).

1 Theorem C (existence of an absorbing region W , not necessarily s.c.)
2 Results on existence of wrfp:

Lemma 1 (Open set maps over itself)

Corollary 2 (Continum surrounds a pole and maps out)

Proposition 3 (Boundary maps in)

3 Proposition 4 (Poles in holes)

Standing assumption: f holomorphic on a neighborhood of the domain
being considered.
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Lemma 1 (Open set maps over itself)

Ω bounded domain with finite Euler characteristic,

D component of Ĉ \ f (∂Ω),

∃z0 ∈ Ω such that f (z0) ∈ D,

(left) Ω ⊂ D

(right) Ω ⊂ D, Ω s.c., ∂Ω locally connected and f has no fixed points
in ∂Ω.

Then, f has a wrfp in Ω.

D
f (z0)

f (∂Ω)

z0

Ω

f (∂Ω)

f (z0)

D
Ω

z0
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Corollary 2: Continuum surounds a pole and maps out
X ⊂ C compact. Set:

ext(X ): unbounded component of Ĉ \ X .

K (X ) = Ĉ \ ext(x)

X ⊂ C continuum

f has no poles in X ,

K (X ) contains a pole of f ,

K (X ) ⊂ ext(f (X )).

Then, f has a weakly repelling fixed point in the interior of K (X ).

K(X ) p

X f (X )
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Lemma 3: Boundary maps in

Ω ⊂ C bounded, simply connected domain;

there exists m ≥ 2, such that f m is defined on ∂Ω,

f j(∂Ω) ⊂ Ω for j = 1, . . . ,m − 1,

f m(∂Ω) ∩ Ω = ∅.
Then, f has a weakly repelling fixed point in Ω.

Ω

f m(∂Ω)

f (∂Ω)

(Note that f m(∂Ω) could also surround Ω)
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Proposition 4: Poles in holes

V ⊂ F(f ) open and invariant by f ∈ Mer .

γ ⊂ V closed curve such that K (γ) ∩ J(f ) 6= ∅.

Then, ∃ n ≥ 0 | K (f n(γ)) contains a pole of f .

Corollary

V ⊂ F(f ) open and
invariant by f ∈ Mer.

V is multiply connected

Then, there exists at least one
bounded connected component
of Ĉ \ V containing a pole.

U

W
p
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Proof of Theorem A (invariant case)

∗ U invariant Baker domain, multiply connected:
f n →∞ unif. on cpct. subsets of U.

∗ By Theorem C, ∃ W ⊂ U absorbing region:
For all compact K ⊂ U, ∃ n0 | f n0(K ) ⊂W .

We split into two cases:

1 W is multiply connected;

2 W is simply connected.
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Case 1: W is multiply connected.
By Proposition 4 (Poles in holes):

∗ ∃ a component of C \W which contains a pole P.

Consider W , f (W ), f 2(W ), · · · and remember f n(W ) ⊂ f n−1(W ).

(a) There exists a maximal k > 0 such that P is contained in a bdd
component Ω of C \ f k(W ).

Then, X = ∂Ω, and f (X ) ⊂ ext(X ) and f (X ) does not surround P.

Corollary 2 (Continum surounds a pole and maps out) ⇒ ∃ wrfp.

U

p
W
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Case 1: W is multiply connected.
(b) P is contained in a a bdd component Ωk of C \ f k(W ) for all k > 0.

∗ Choose z0 and let k be large enough so that

{P, z0, f (z0)} ∈ Ωk

Again f (∂Ωk) ⊂ C \ Ωk and surounds Ωk .

∗ There exists D component of C \ f (∂Ωk) which contains Ωk .
Moreover, z0 ∈ Ωk and f (z0) ∈ D.

Lemma 1 (Open set maps over itself)

⇒ ∃ wrfp.

D

f (∂Ω)

z0

Ω

f (z0)

P
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Case 2: W is simply connected

By Proposition 4 (Poles in holes):

∗ ∃ γ ⊂ U a closed curve which surounds a pole P.
Observe γ 6⊂W !!!

∗ Consider
Γ =

⋃
n≥0

f n(γ) closed subset of C

f (Γ) ⊂ Γ

Γj :=
⋃

n≥0 f n+j(γ) = f j(Γ) ⊂ U

Γ ⊃ Γ1 ⊃ Γ2 ⊃ · · ·
For j large enough, Γj ⊂W (i.e. does not suround P).
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Case 2: W is simply connected

∗ Let k ≥ 0 be maximal such that
Γk surounds P but Γk+1 does not.

∗ Let E be the bdd component of C \ Γk containing P. Let

Ω = filled(E ) simply connected

∗ ∂Ω locally connected, with no fixed points.

∗ f (∂Ω) does NOT suround P. Hence,{
Ω ⊂ ext(f (∂Ω)) or

f (∂Ω) ⊂ Ω
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Case 2: W is simply connected

(a) Ω ⊂ ext(f (∂Ω))

Corollary 2 (Cont. surounds a pole and maps out) ⇒ ∃ wrfp

(b) f (∂Ω) ⊂ Ω

Since f n(∂Ω)→∞, there exists m > 1 minimal such that

f (∂Ω), f 2(∂Ω), · · · f m−1(∂Ω) and f m(∂Ω) ∩ Ω = ∅.

Lemma 3 (Boundary maps in)

⇒ ∃ wrfp.

Ω
f m(∂Ω)

f (∂Ω)

q.e.d.
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Observations

This method is entirely different from the former proofs: there are NO
PULLBACKS. This means asymptotic values present no danger!

Work in progress: We believe this proof with very few modifications
could offer a UNIFIED proof of ALL cases at once (rational or
transcendental, attracting or parabolic or Baker). Right now, the
proof of the main result splits into 4 papers, each with a different
method!
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Thank you for your attention!!
and

gràcies i feliç aniversari Jaume!!
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PERIODIC POINTS OF HOLOMORPHIC MAPS
VIA LEFSCHETZ NUMBERS

NÚRIA FAGELLA AND JAUME LLIBRE

Abstract. In this paper we study the set of periods of holomorphic maps on
compact manifolds, using the periodic Lefschetz numbers introduced by Dold
and Llibre, which can be computed from the homology class of the map. We
show that these numbers contain information about the existence of periodic
points of a given period; and, if we assume the map to be transversal, then
they give us the exact number of such periodic orbits. We apply this result
to the complex projective space of dimension n and to some special type of
Hopf surfaces, partially characterizing their set of periods. In the first case
we also show that any holomorphic map of CP (n) of degree greater than one
has infinitely many distinct periodic orbits, hence generalizing a theorem of
Fornaess and Sibony. We then characterize the set of periods of a holomorphic
map on the Riemann sphere, hence giving an alternative proof of Baker’s
theorem.

1. Introduction

In dynamical systems and, in particular, in the study of iteration of self maps of
a given manifold, periodic orbits play an important role.

Given a continuous map f : X → X , a point x ∈ X is called periodic if there
exists k ∈ N such that fk(x) = x. The minimum of such k is called the period of
x, and the iterates {x, f(x), . . . , fk−1(x)} form a periodic orbit. For such a map, it
is natural to ask how many periodic orbits it has or what are the possible periods
that may appear. To deal with these problems, differential topological methods have
often proved to be very useful, since it is clear that the topology of the manifold in
question plays an essential role.

The Lefschetz Fixed Point Theorem was one of the main results in this direction.
Knowing the homology class of the map, one can compute its Lefschetz number L(f)
and, if the result is nonzero, conclude the existence of a fixed point. Clearly, the
same process, applied to the kth iterate of the function, fk, would give the existence
of a periodic orbit of period k, or a divisor of k. We have gone a long way from this
theorem, and there is plenty of literature on its generalizations and applications
(see [2, 5, 8, 16]).

To deal with the problem of existence of periodic orbits with a given period
the periodic Lefschetz number of period k, denoted by l(fk), was introduced in
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