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The (planar) elliptic restricted three body problem (ER3BP).

We consider the motion of a particle ¢ with zero mass under the attraction

of two particles gg and qj, called primaries, which move 1n elliptic orbits

with eccentricity ey around their center of mass.

Typical models:
e Sun-Jupiter—asteroid or comet: eg = 0.048
e Sun—Earth—-Moon systems: eqg = 0.016

We consider the motion of the particle g (comet) when it moves outside of
the orbit of the primaries along nearly parabolic orbits.




The equations

The motion of the particle g (comet) 1s described by

d?q q— qs(t,eo) q— qy(t,ep)
az — -

L4 :
lg — gs(t, eo0)| g — q3(t,e0)|?

This 1s a time-periodic Hamiltonian system (2 and 1/2 degrees of
freedom) with Hamiltonian

H(Q?]?atv 607“) —

p* (1—p) 7
2

‘q_QS(t7 60)' |q_QJ(t7€0)‘.

Parameters: 0 < u,eq < 1 small.




The two body problem: Sun-comet

When 1 = 0, there 1s no Jupiter in the equation of motion and the Sun 1s
fixed at the origin: gs(t,eq) = 0

The Sun gg and the comet g form the two-body problem with the

9
1
Hamiltonian H (q, p,t;eq,0) = Ho(q,p) = % — W
q

The two—body problem is integrable.




The ER3BP as a perturbation of the 2BP

We shall study the case of eg > 0 and small ¢ > 0.

Hamiltonian H,,(q, p, t, eo) is a small time-periodic perturbation of the
integrable two body problem (Sun-comet).

The perturbation term is

AH,(q,p,t;eo) H(q,p,t;e0, v) — Ho(q,p)

= (e )
8 (|q— qJ1<t,eo>\ B Fh) |

Since Jupiter q;(t, eg) moves along an ellipse with semi-major axis

1 — u, 1n the case g being uniformly away from the unit ball both terms
are of order of 1 and tend to zero as ¢ — oo.




Expression of the primaries in polar coordinates (r, )

qs = qs(t,eo) = p(ro cos f,rgsin f)

Jupiter:
g5 = qi(t,e0) = —(1 — p)(ro cos f, o sin f)
with

(t: e) 1 —e? df  (1+egcos f)?
ro = ro(t;eq) = =
O T e cos f dt (1—e3)3/2

where f = f(t;ep) is the true anomaly. Also
ro =1ro(t;eg) =1 — egcos F, t=F —epsinF,

where E is the eccentric anomaly.




Hamiltonian equations in polar coordinates
Polar coordinates ¢ = (z,y) = (rcosa,rsina), a € T, r > 0.

Hamiltonian

P? PpP?
H(r,a, P, Py, t;eq, 1) = 77" + ﬁ —U(r,a,t;eq, 1t)

where (r, P,.) and («, P,) are pairs of conjugate variables,

1 —p [

U(?“, Q, ta €0, ,u) — + ’
g — qs]

g —gs|

g — as]” r? —2(1 = p)rro cos(a — f) + (1 — p)*rg,

|C]—CIS\2 r? 4 20T 7 COS(Oz—f)—I—,u27“8,

~ roltieq) = 1 —e? df  (1+egcosf)?
o= oAk ~ 1+egcos f’ dt (1 —e3)3/2




Hamiltonian equations in polar coordinates

P, := G is the angular momentum.

H(T,Q,PT,G,t; 607:“) —




The two body problem in polar coordinates

In the polar coordinates: ¢ = (z,y) = (rcosa,rsina), a € T, r > 0,
The Hamiltonian of the two body problem becomes

PG

2 +27°2 r’

Ho(?“, PT) Q, G)

h = Hy is the energy.
(G and H are both first integrals of motion.

If h < 0, motions are elliptic:

Semi-major axis: @ = 1/(—2h), eccentricity e = v/1 + 2hG?2.

If h = 0 (which corresponds to e = 1) the motion is parabolic.




Diffusion of the angular momentum

In general, Diffusion = Gaining lots of energy by applying small forces.

In the elliptic restricted three body (ERTBP) problem we want to see that
the angular momentum of the comet G(t) can have large changes when
the eccentricity eg > 0 and p > 0 are small enough:

Given any G1, GGo > 1, there exist trajectories of the ERTBP whose

angular momentum satisfies, for some 1" > 0:

G(0) < Gy G(T) > G-

Proven for 0 < 4 < eg < 1 and any 1 < G1,G4 < 1/ey.

Likely (need still some work) forany 0 < eg < 1and 0 < p < 1.




Previous results

For oscillatory motions or diffusion close to parabolic orbits:
Llibre-Simo6 1980 (oscillatory motions in the CRTBP for 0 < pu < 1)
Guardia-Martin-Seara 2012 (idem for 0 < p < 1)

Xia 1993 (local diffusion in the ERTBP)

Martinez-Pinyol 1994 (Massive computations in the ERTBP)

Other types of oscillatory motions or diffusion:

Llibre-Martinez-Simo 1985 (oscillatory motions close to Lo in the
CRTBP)

Bolotin 2006 (close to collision in the ERTBP)
Capiiiski-Zgliczyiiski 2011 (close to Lo in the ERTBP)

Féjoz-Guardia-Kaloshin-Roldan 2012 (close to resonances in the ERTBP)




One limit: the two body problem: ;= 0

A priori unstable structure

Introducing 2 := 1/r, y := P,, we get new Hamiltonian equations:

113‘3 6’7‘[0 ) (97‘[0
—_—— 0%

2 Oy 0G
5133 aHO G (97‘(0

2 Ox O« 0 s

2 Gt 22
with Hamiltonian Ho(x, y, G) = 5 + s 3 and Poisson bracket

3
{f,g}z—x (0f@g_398f)+8f dg  Og Of

2 \0zdy 9zdy)  0adG OadG

which has the separatrix loop v = {Ho(x,y,G) = 0} to the origin.







One limit: the two body problem: ;= 0

A priori unstable structure: An invariant “normally parabolic” cylinder.

Main features we will use:

e The 3 dimensional manifold:

A ={z=9y=0, (0,G,s) € T xR x T}

1S 1nvariant.

~

Ua,G Aa,G

e The inner dynamics on A is trivial:

(a,G,s) — (o, G, s+ t)

~

e A has stable and unstable manifolds.







One limit: the two body problem: ;= 0

A priori unstable structure: An invariant homoclinic manifold to A.

~ ~

Wi (Aoo) = W' (Aso)
{Ho(z,y,G) =0, (a,G,s) € T xR, x T}

that can be seen as a union of homoclinic orbits to 1~\OO (homoclinic

v = U ’?a,G

(a,G)

manifold).

We can parameterize the 4-dimensional homoclinic manifold as:

5/ — {20 F= (xG(T%yG(T)?O&G(T)_l_OéJGa 8)77- < RvG S R—i—a (Oé,S) S T2}




(X.Y)-plane m
N

(phi,G)-cylinder




One limit: the two body problem: ;= 0

Outer dynamics: the scattering map (D-Llave-Seara 2000) in M. We can

define a map in A associated to the homoclinic manifold o’

So: Aoy — Asg
by Z, = Sp(Z_) iff 92 € 4 such that
d(p(t;2),o(t;2+)) — 0ast — too0.

The orbit through 2 is a heteroclinic connection between the orbits
through z.

Using the point of Z = 2y = (zq(7),ya(7), ac(T) + a, G, s), one can
compute Sy in coordinates:

So(a, G, s) = (o, G, 5)




One limit: the two body problem: ;1 = 0

Outer dynamics: the scattering map in Ao

As S() = Id,

The unperturbed periodic orbits A, g only have homoclinic connections.
Main goal:

For 11 > 0 we want to see that we can define a scattering map such that
the image of one periodic orbit intersects other periodic orbits with larger
angular momentum (. Then we will have heteroclinic orbits between

periodic orbits




Arnold diffusion: ¢y > 0, > 0

In variables (z, y), the Hamiltonian is:

H(%%%G,S;eoaﬂ) — 9

with U(z, a, G, s;e0) = 22U (x, o, G, s; €9, 11)

Implications:

e Ay ={z=y=0, (a,G,s) € T x R x T} is still invariant.

~

e The periodic orbits A, g persist.

e The inner dynamics on A is trivial:

(a,G,s) = (a, G, s+ t)




Arnold diffusion: ¢y > 0, u > 0

~ ~

For y1 > 0, eg > 0, the manifolds W7 (A ) and W /(A ) intersect
transversally along TWO homoclinic manifolds.

This result 1s based on a Melnikov type computation.

Melnikov potential:

L(a,G,s5e9) = /A—U(a:(;(t), ag(t) +a,s +t;ep) dt.
R

where U(x, o, s; eg, i) = 22 + pAU(x, o, s;eq) + O(u?)

Intersection property: If the function
T— L(a,G,s —T;e)

has a non-degenerate critical point 7*(a, G, s; eg), then there is a

~ ~

transversal intersection between W* (A ) and W*(A ) close to
Zo = (:CG(T)7 yG(T)v aG(T) + Q, G7 S)




Arnold diffusion: ¢y > 0, > 0

For any fixed («, G, eq), we just need to find a critical point s*(«, G; eg)
of s — L(a, G, s;€p), that is, a solution s*(«, G; eg) of the equation

0L (0.Gsie0) =0

and we recover 7*(«a, G, s;e9) = s — s (a, G; ep)

Once we have 7*(a, G, s; €g) we can consider the Poincaré reduced

function

L (Oé, G7 60) — ‘C(&7 Ga —7" (047 Ga 07 60); 60) — ‘C(O‘? G7 5" (av G7 60); 60)




Arnold diffusion: ¢y > 0, > 0

The scattering map S given by the homoclinic intersection associated to

the critical point s* is given as:

oL
T Maa

OL”

(a, G, s) — ( o

+0(1?), G + p——+ 0(u?), s)
S 1s given, up to first order in u, as the time — . Hamiltonian flow of the

autonomous Hamiltonian £*(a, G)!

Then, looking at the level curves of L*(«, G) we get the images under the
scattering map.




Arnold diffusion: ¢y > 0, u > 0

The inner dynamics in A is trivial:

(o, G, s) — (o, G, s+ 1)

The classical geometric mechanism to obtain diffusion does not work:
there 1s no possibility of combining the inner and the outer dynamics to
obtain large changes of G.

The Poincaré map P(«, G, s) = (a, G, s), therefore So P = S

Only with one scattering map we cannot get large changes in G.




Arnold diffusion: ¢y > 0, u > 0

The function L(a, G, s; eg) has two non-degenerate critical points s7 , s*

which give rise to two different perturbed scattering maps S, S_.
The foliations of their level curves are transversal.

We can construct heteroclinic chains of periodic orbits with increasing
angular momentum choosing the right scattering map any time




Computation of the Melnikov potential £ for e)G < 1
Fourier expanding in the angle s (and «), we get

L(a,G,se9) = Lo(a,Gse9) + Li(a,G,s;e0)
+ F(a,Gieq) + E(o,G,s;e)
s 15meg

Lo(a, G eq) — 08 gas o8

e~ G’/3
Li(a,G,s5e0) = \/; Ve (cos(s — a) + pcos(s — 2ar)),

where p = 10eeqG?, F is small: F = O (e%G_7), and F is exponentially
small: E = e~ /30(G~3/2,e0G1/2, €2G5/?).

e [ contains no harmonics in s and one first order harmonic in a.
e [ contains two first order harmonics in s.

e ¢oG < 1 needed for the convergence of the expansions.




Computation of the term £, for e)G < 1

s+— L1(a, G, s;ep) is indeed a cosine function:

e G’/3
L1(a, G, s5e9) = \/g 1/ V14 2pcosa+ p?cos(s — o — ax),

where a*x = a * (p, @) = 2 arctan 1_f;iélo‘;‘a (p = 10eeqG?), with a

unique non-degenerate maximum (minimum) for s = o + o™
(s = o+ o™ + m), where L, takes the values

~G%/3
iﬁl(a,G;eo):i\/g eTVE V1 + 2pcosa + p2.

3
—G3/3

Note that for ¢g = 0, L] (, G;0) = £/% <=7z~ does not depend on a.




Computation of the reduced Poincaré functions £]

. OF oL . . L
Since |— | < |=—2|, the function s L(a, G, s;eq) is a “cosine-like”

0s 0s

function, with unique non-degenerate maximum and minimum at s’ . We

can define the Poincaré reduced functions

LY (a,Gse9) = L(a, G, s 5e0) =Ly LT+ F+ EL

so that the associated scattering maps S4 are given by

OLY 5 OLY 9
(o, G) — (Oz—um HOW), G+ p— =+ 0(W7) ).




Functionally independent Scattering maps S
The scattering maps Sy are given by

oL oL

(o, G) — (a—,uaG +0(u?),G + p N +O(u2)).

e S, are given, except for O(u?), as the time ; Hamiltonian flow of
the autonomous Hamiltonians — L% (a, ).

e The iterates under S follow the level curves of L7 .

o Since {L%,L* } = —2{Ly, L]} + - -- only vanishes on oo = 0, 7, we
can choose alternatively S+ to get diffusing pseudo-orbits and get
diffusion along 1 < G < 1/eyp.




— —Lj_ — ctant

1— —L* = ctant

— —  Diffusing
orbit




Computation of the term £, for general egGG

W@‘GB/S
Ll(&7G78;60) — \/g G1/2 X

X (cos(s — a) + 8eG Z amR"™ cos (s — (m + l)a)>
m=1
16 (2m + 3)!!

2m + o) R = 2e¢G, which can be also written as
m! (2m I

where a,,, =

~-G?/3 _ .
L1(a, G, s5e9) = \/geGl/2 Re {ez(s—a) (1 + 8eGM (Re_w‘))}

where M (z) := M (5/2,4,2) =>.°_ amz™ =1+ 52/8 4+ O(2?) is

the confluent hypergeometric Kummer function, solution of the Kummer
equation zM"” + (4 — z)M' —5M /2 = 0.




Computation of the Melnikov potential £ for general egG

L(a,G,s5e0) = Lo(a,Gieq) + Li(a,G,s;e0)
+ F(a,G;eq) + E(o,G,s;e)

15
Lo(la,Gseq) = T T Cos

G3 8G?

-G8 |
Li(, G, s1e0) = \ﬁe Re {7 (14 8¢GM (Re™™)) |,

8 G1/2

where F'1s small and E is exponentially small, which gives rise to two
different scattering maps:

e For ¢gG < 1 coincides with the previous computations.
e For egG > 1 can be computed as in Martinez-Pinyol 1994.

e For egG £ 1 and egGG 2 1 requires a (numerical and validated)
computation.




Arnold diffusion: eqg > 0, u > 0
For egG < 1 analytic proof.

It remains to check the case egG > 1 via analytical, numerical o
computer assisted methods.

All the previous results need p to be exponentially small with respect

to G > 1.

A priori stable: Using the same techniques as in Guardia, Martin and
Seara 2012, prove diffusion for 1 small, independent of GG and
arbitrary 0 < eg < 1.
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if we compute the integral in (5.10) with § = . Computing the derivative dc, /80 we
state the result so far obtained.

Proposition 5.1. In order to verify the non-tangentiality condition one has the
Jfollowing relation

-
I=Za@m)  =-(2-64C?)

m=
f=

/2 3 3 .
{ 16sinzcos°z Sing[4+2A'3/2—-3A_3/2(2+16COSZZCOSH/C2)]

' (S) 2C* —64cos*z

4096sinzcos’z . -
GO s L4~} .

where 0=—C3(tgz+tg3z/3)/16+n+2z and A=1+16cos?zcos0/C*+64cos*z/C*.

To end the proof of Theorem 5.1 we shall prove that the dominant terms in
(5.12), for C large, are not zero.
We introduce t=tgz and §=C>/16 in (5.12). The evaluation of the integrals

involved will be done through integration in the complex domain along the curve
I of Fig. 7.

Lemma 5.1. Let I,= { cos(d(z+13/3))(1+1*)"*dr, k=1. For 6>0 sufficiently
o

large we have

/0 33
I,=Re {(7:/2)[ Res [W ;

2’=i}}(1 +o(1)). (5.13)
Proof. Let I' be the curve OABCDO of Fig. 7. Points C and D belong to the circle
T=/+¢eexp(¢p), ¢ small. The curve CB is defined by Re(t+1/3)=0, ie, if
1=+, it is a branch of a hyperbola: 3+ £2—3n?=0 (see [3]). We integrate
h=exp(¢:o(z+3/3))/(1 + %) along I



