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Background

Two Dimensional Systems

ẋ = µx + P(x , y), ẏ = −λy + Q(x , y)

(1:-1)-resonant quadratic systems (Dulac and Kapteyn)

(1:-1)-resonant Homogeneous Cubic systems (Sibirskii)

(1:-2)-resonant Center (by Fronville, Sadovski and Żo la̧dek)

Three Dimensional Systems

ẋ = λx+P(x , y , z), ẏ = −µy+Q(x , y , z) ż = νz+R(x , y , z)

ABC System (Moulin-Ollagnier)

With One Zero Eigenvalue (Basov and Romanovski)
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General form of Three Dimensional Lotka-Volterra systems

Three dimensional Lotka-Volterra system has the form

ẋ = x(λ+ ax + by + cz) = P,

ẏ = y(µ+ dx + ey + fz) = Q,

ż = z(ν + gx + hy + kz) = R,

where λ, ν, µ 6= 0.

The scientific literature on Lotka-Volterra systems is very extensive
due to their many applications such as:

Population Dynamics

Ecology

Chemistry

Game Theory etc.
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Some basic definitions

First Integral: XH = P ∂H
∂x + Q ∂H

∂y + R ∂H
∂z = 0

Invariant Algebraic Surface: XF = P ∂F
∂x + Q ∂F

∂y + R ∂F
∂z = CF

Integrable: Can be brought to the form

Ẋ = λXm, Ẏ = µYm, Ż = νZm,

after a change of variables where m = 1 + O(X ,Y ,Z ).
Equivalently, ∃ φ and ψ first integrals, with

φ = x−µyλ(1 + O(x , y , z)) and ψ = yνz−µ(1 + O(x , y , z))

Linearizable: Can be brought to the form

Ẋ = λX , Ẏ = µY , Ż = νZ ,

after a change of variables.
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after a change of variables where m = 1 + O(X ,Y ,Z ).
Equivalently, ∃ φ and ψ first integrals, with

φ = x−µyλ(1 + O(x , y , z)) and ψ = yνz−µ(1 + O(x , y , z))

Linearizable: Can be brought to the form
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Necessary and sufficient conditions for integrability

To find necessary and sufficient conditions for integrability:

Step1: We seek two analytic first integrals of the form

φ = x−µyλ
(
1 + o(x , y , z)

)
and ψ = yνz−µ

(
1 + o(x , y , z)

)
where λ, ν and µ < 0.

Step2: We then calculate the successive terms in the power series
expansion of Xφ = 0 and Xψ = 0. The obstructions to the
existence of φ and ψ correspond to the resonant terms in the
normal form of the vector field.
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Mechanism for integrability

Step3: Having calculated a number of these quantities, we then
solve them simultaneously by computing a Gröbner basis. The
conditions are necessary, but we do not know as yet that they are
sufficient. The calculations were performed in MAPLE and
REDUCE. Finally the minAssGTZ algorithm in SINGULAR was
used to check that the conditions found were irreducible.

Step4: We need finally to prove sufficiency of these conditions by
exhibiting two independent first integrals via the Darboux method
together with inverse Jacobi multipliers or some other technique
like blow-downs or the existence of a linearizable node.
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Mechanism for Linearizability

We seek a change of coordinates

X = x + o(x , y , z), Y = y + o(x , y , z), Z = z + o(x , y , z)

which brings the system to

Ẋ = λX , Ẏ = µY , Ż = νZ ,

Similar to integrability mechanism, we find factorized Gröbner
basis by MAPLE, REDUCE and SINGULAR and then prove their
sufficiency.
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Results (Inverse Jacobi Multiplier)

A function M is an inverse Jacobi multiplier for the vector field X if

X (M) = Mdiv(X ) ⇐⇒ div(X/M) = 0.

Suppose that the level surfaces φ = c are locally parameterized by
some function z = fc(x , y). Using the x and y coordinates to
parameterize φ = c , we obtain a vector field

P(x , y , fc(x , y))
∂

∂x
+ Q(x , y , fc(x , y))

∂

∂y
.

It was proven that

M(x , y , fc(x , y))
∂φ

∂z
(x , y , fc(x , y))

is an inverse integrating factor for this vector field. Hence, by
quadratures along φ = c , we can construct a second first integral
ψc(x , y) for each value of c . The function ψφ(x ,y ,z)(x , y) gives a
second first integral of the system.
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Results (Inverse Jacobi Multiplier)

Theorem

Suppose the analytic vector field

x(λ+ax+by +cz)
∂

∂x
+y(µ+dx+ey +fz)

∂

∂y
+z(ν+gx+hy +kz)

∂

∂z
,

has an analytic first integral φ = xαyβzγ(1 + O(x , y , z)) with at
least one of α, β, γ 6= 0 and a Jacobi multiplier
M = x ry sz t(1 + O(x , y , z)) and suppose that the cross product of
(r − i − 1, s − j − 1, t − k − 1) and (α, β, γ) is bounded away from
zero for any integers i , j , k ≥ 0, then the system has a second
analytic first integral of the form
ψ = x1−ry1−sz1−t(1 + O(x , y , z)), and hence the system (1) is
integrable.
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Relation Between Integrability and Linearizability

Theorem

Consider the three dimensional Lotka-Volterra system

ẋ = x(λ+ ax + by + cz) = P,

ẏ = y(µ+ dx + ey + fz) = Q,

ż = z(ν + gx + hy + kz) = R,

x = 0, y = 0 and z = 0 have cofactors Lx , Ly and Lz respectively.
If Lx , Ly , Lz and the divergence div(X ) are linearly independent
then the origin is integrable if and only if it is linearizable.

Waleed Aziz and Colin Christopher Local integrability 3D Lotka-Volterra systems
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Results

We consider three dimensional Lotka-Volterra system

ẋ = x(λ+ ax + by + cz) = P,

ẏ = y(µ+ dx + ey + fz) = Q,

ż = z(ν + gx + hy + kz) = R.

(1)

We give a complete classification of the integrability and
linearizability conditions for (1) at the origin in the case of
(1 : −1 : 1), (2 : −1 : 1) or (1 : −2 : 1)-resonance.
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(1:-1:1)-Resonance

Theorem

The origin of system (1) with 1 : −1 : 1 resonant is integrable
if and only if one of the following conditions holds:

1) ab − de = ac − 2ak + gk = ae + ah − de − eg = af + ak−
dk − gk = bd + bg − de − dh = bf − ch − fh + hk = bk−
ce + ek − hk = cd + cg − 2dk + fg − gk = ef − hk = 0

2) b = d = f = h = 0

3) f = g = h = b − e = d − a = 0

3∗) b = c = d = f − k = e − h = 0

4) b = c = d = f = k = 0

4∗) a = d = g = h = f = 0

5) b = e = h = 0
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(1:-1:1)-Resonance

Theorem

Moreover, the system is linearizable if and only if either one of the
conditions (2)-(5) or one of the following holds:

1.1) a = c = d = f = g = k = 0

1.2) a = bk − ch = d = e − h = f − k = g = 0

1.2∗) a− d = b − e = c = dh − eg = f = k = 0

1.3) a− g = b − h = c − k = d − g = e − h = f − k = 0
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Methods Used

To find two independent first integrals we have used the following
tools:

 Darboux (Invariant algebraic surfaces and exponential factors)

 Darboux with Inverse Jacobi multiplier

 Blow-down method

 Linearizable node

 Power Series with Inverse Jacobi multiplier
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(1:-1:1)-Resonance (Darboux Method)

We now prove the sufficiency of some of the conditions above:

Case 1: If e 6= 0, the system has an invariant algebraic surface

` = 1 + ax − ey + kz = 0

with cofactor
L` = ax + ey + kz

Two independent first integrals are

φ1 = xy`−1−
b
e , φ2 = yz`−1−

h
e .

Waleed Aziz and Colin Christopher Local integrability 3D Lotka-Volterra systems
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Application to (1:-1:1) Resonant (Darboux Method)

When e = 0, we have some sub cases:

for example when b, h 6= 0. We get an exponential factor

` = exp(dhx − bhy + bfz)

with cofactor
dhx + bhy + bfz .

This gives first integrals

φ1 = xy`−
1
h

and
φ2 = yz`−

1
b .
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(1:-1:1)-Resonance (Darboux Linearization)

Case 1.1: The system appears as

ẋ = x(1 + by), ẏ = y(−1 + ey), ż = z(1 + hy),

If e 6= 0, the change of coordinates

(X ,Y ,Z ) = (x(1− ey)−
b
e , y(1− ey)−1, z(1− ey)−

h
e )

linearizes the system.
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(1:-1:1)-Resonance (Linearizable Node)

Case 5: Then the system reduces to

ẋ = x(1 + ax + cz), ẏ = y(−1 + dx + fz), ż = z(1 + gx + kz),

The first and third equations give a linearizable node and hence
we transform to

Ẋ = X , Ż = Z .

Thus ẏ
y = (−1 + dx(X ,Z ) + fz(X ,Z )). It is suffices to find a

function `(X ,Z ) such that ˙̀(X ,Z ) = dx(X ,Z ) + fz(X ,Z ), then
the transformation Y = ye−` gives Ẏ = −Y .

Writing `(X ,Z ) =
∑

i+j>0 bijX
iZ j , we have to solve ˙̀ =∑

i+j>0(i + j)bijX
iZ j = dx(X ,Z ) + fz(X ,Z ) =

∑
i+j>0 aijX

iZ j ,

then bij =
aij
i+j , so it is clear the solution exists and is analytic.
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(2:-1:1) and (1:-2:1)-Resonance

For (2:-1:1)-resonance, we have 11 cases for integrability with 13

cases of linearizability. While for (1:-2:1)-resonance, we have 21

integrability with 19 linearizability conditions.

We have selected different cases from both (2:-1:1) and
(1:-2:1)-resonant.
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(2:-1:1)-Resonance (Blow-down Method)

Case 3: The system is

ẋ = x(2+ax−ey−fz), ẏ = y(−1+ey +fz), ż = z(1+gx +ey +fz).
(2)

Using (X ,Y ,Z ) = (x , xy , xz), the system above becomes

Ẋ = 2X + aX 2− eY − fZ , Ẏ = Y (1 + aX ), Ż = Z (3 + (a + g)X ).

The origin is in the Poincaré domain. Hence it is linearizable via

(X̃ , Ỹ , Z̃ ) = (X − eY + fZ + O(2),Y (1 + O(1)),Z (1 + O(1))).

The two first integrals φ̃ = X̃−1 Ỹ 2 and ψ̃ = X̃−2 Ỹ Z̃ of the
linearized system pull back to first integrals of (2) in the form

φ1 = x y2(1 + O(x , y , z)), and φ2 = yz(1 + O(x , y , z)).
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(2:-1:1)-Resonance (Inverse Jacobi Multiplier)

Case 7: In this case the system (1) reduces to

ẋ = x(2 + ax), ẏ = y(−1 + dx + ey + fz), ż = z(1 + gx + ey + fz).

The system has an IAS ` = 2 + ax with cofactor L` = ax yielding a

first integral φ = x−1 y−1 z `
d−g+a

a . We also have an inverse Jacobi
multiplier

IJM = x
5
2 y3(2 + ax)−

1
2
− 2d

a
+ g

a

Theorem 1 therefore guarantees the existence of a second first
integral of the form ψ = x−3/2y−2z(1 + O(x , y , z)). Now the
desired first integrals are φ1 = φ2ψ−2 = xy2(1 + . . .) and
φ2 = φ3ψ−2 = yz(1 + . . .).
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(2:-1:1)-Resonance (Linearizable Node)

Case 9: The system (1) can be written as

ẋ = x(2 + ax + cz), ẏ = y(−1 + dx + ey), ż = z(1 + gx + kz).

The first and third equations give a linearizable node. To linearize

the second equation, we seek an invariant surface of the form

`+χy = 0 with cofactor dx + ey where ` = `(X ,Z ), χ = χ(X ,Z ).

Use Y = y
`+χy to linearize the second equation. To find such ` and

χ we therefore need to solve

Waleed Aziz and Colin Christopher Local integrability 3D Lotka-Volterra systems
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(2:-1:1)-Resonance (Linearizable Node)

χ̇y − χy = `(dx + ey)− ˙̀⇒ χ̇− χ = e `, ˙̀ = d x `.

To find `, we write ` = eψ and solve ψ̇ = dx .

Let ψ =
∑

i+j>0 cijX
iZ j , then∑

i+j>0

(2i + j)cijX
iZ j = dx(X ,Z ) = d X +

∑
i+j>1

dijX
iZ j ,

for some dij .
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(2:-1:1)-Resonance (Linearizable Node)

Clearly, c10 = d
2 , c01 = 0, cij =

dij
2i+j for i + j > 1. The

convergence of
∑

i+j>1 dijX
iZ j , guarantees the convergence of ψ

and hence `. Furthermore, it is clear that ` will contain no term in

Z . Now, writing ` =
∑

bijX
iZ j , and noting that a01 = 0, we find

that χ =
∑ e

2i+j−1aijX
iZ j gives a convergent expression for χ.
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(1:-2:1)-Resonance (Projective Transformation)

Case 3: The reduced system is therefore

ẋ = x(1+2gx−ey−3fz), ẏ = y(−2+ey+fz), ż = z(1+gx−fz).

When fg 6= 0, apply a transformation of the form
(X ,Y ,Z ) = (gx − fz , xy , z2), the resulting system is

Ẋ = X +2X 2− f 2Z−geY , Ẏ = Y (−1+2X ), Ż = Z (2+2X ),

Finally we apply the projective transformation

(X̂ , Ŷ , Ẑ ) = (
X

Y
,

1

Y
,

Z

Y
)
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(1:-2:1)-Resonance (Projective Transformation)

to get the linear system

˙̂X = 2X̂ − f 2Ẑ − ge, ˙̂Y = Ŷ − 2X̂ , ˙̂Z = 3Ẑ .

This system admit first integrals φ = `−21 `2, ψ = Z `−31 ,
where

`1 = 1− 1

ge
X̂ − 1

2ge
Ŷ − f 2

2ge
Ẑ , `2 = 1− 2

ge
X̂ − 2f 2

ge
Ẑ ,

One can find two independent first integrals of the desirable form

φ1 =
φ

2f
−
√
ψ = x2 y(−g

f
+ . . .)

and

φ2 =
ψ

φ1
= y z2(

f

g
+ . . .).
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(1:-2:1)-Resonance (Transforming to Linearizable Node)

Case 10: In this case we have the system

ẋ = x(1 + ax), ẏ = y(−2 + ey + fz), ż = z(1 + gx + ey + fz),

Use (Y ,Z ) = ( y
2+2fz−ey ,

z
2+2fz−ey ) to gives a new system

ẋ = x(1 + ax), Ẏ = −2Y (1 + fgxZ ), Ż = Z (1 + gx − 2fgxZ ),

The first and the third equations obviously gives a linearizable
node. To linearize the second equation, it is suffices to find
ψ(X̂ , Ẑ ) such that ψ̇ = fgxZ and use Ŷ = Ye2ψ.
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Conclusion

Table: Classification of all cases

Methods (1:-1:1) (2:-1:1) (1:-2:1)

Darboux Method 6 8 21
Darboux with IJM 0 1 5
Linearizable Node 5 4 4

Blow-down Method 0 1 0
Power Series with IJM 0 1 0
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Generalization of the Lotka-Volterra systems

The calculations have been extended to the case of
(3,-1,2)-Resonance and also systems of the form

ẋ = x(λ+ ax + by + cz) = P,

ẏ = µy + dx2 + exy + fxz + gyz + hy2 + kz2 = Q,

ż = z(ν + gx + hy + kz) = R,

These case are more challenging computationally than the
Lotka-Volterra systems.
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Case 3 (Ricatti Equation)

The system has the form

ẋ = x(1 + by), ẏ = −y + fxz + hy2, ż = z(1− by).

The invariant algebraic surface is z = 1− 2hy + fhxz + h2y2 = 0

with cofactor Cz = 2hy . Then (X ,Z ) = (x z−
b
2h , z z

b
2h ) linearizes

the first and third equations. Second equation is a Riccati
equation. We seek a solution the form y = G (xz), then

G ′(xz) =
f

2
− 1

2xz
G (xz) +

h

2xz
G 2(xz)

which has a particular solution y1 = sin(
√
fhxz)−cos(

√
fhxz)

√
fhxz)

hsin(
√
fhxz)

. The

change of variables y = Y + y1 transform the second equation to
Ẏ = Y (−1 + 2hy1 + hY ). Look for an invariant algebraic surface
of the form α(X ,Z ) + β(X ,Z )Y = 0 with cofactor 2hy1 + hY and
α(0, 0) = 1, so that the transformation Y

α+βY will linearize this
equation.
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The Monodromy Argument

We look at the monodromy group of one of the separatrices x = 0,

y = 0, z = 0 together with the monodromy ofthe line at infinity.

Each of these lines can be considered as a copy of Riemann sphere

with three singular points on it. If one of these has trivial

monodromy and the other is linearizable, then the third singular

point is integrable.
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The Monodromy Argument
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The Monodromy Argument
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The Monodromy Argument
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The Monodromy Argument
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Liouvillian Integrability

Theorem (Extension of Singer’s Theorem)

Let us consider a rational 1-form ω in Cn. Then ω admits a
Liouvillian first integral if and only if there exists a rational closed
1-form α such that dω = α ∧ ω

Definition

We say that a function is Liouvillian if it can be obtained by a
sequence of extensions from rational functions:

C(x , y , z) = K0 ⊂ K1 · · · ⊂ Kn,

such that for each i , either

i) Ki+1 is algebraic over Ki ;

ii) Ki+1 = Ki (t) with dt = tδ, dδ = 0;

iii) Ki+1 = Ki (t) with dt = δ, dδ = 0;
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Extention of Liouvillian Theorem

Definition

Writing our vector field as a 2-form
Ω = P dy dz + Q dz dx + R dx dy . We say that a three
dimensional vector field is Liouvillian integrable if there exists
Liouvillian 1-forms ω, α and β such that

ω ∧ Ω = 0, dω = α ∧ ω, dα = 0

(
∫

exp(
∫
α) is a first integral), and

dΩ = β ∧ Ω, dβ = 0.

(
∫

exp(β) is an inverse Jacobi Multiplier).

Can we choose α, β and ω to be rational 1-forms?
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Generating Limit Cycles from Centers

One application of finding interesting centers in the planar case is
to obtain good estimates of the number of limit cycles which can
bifurcate from the center under perturbation. Does the same hold
in three dimensions?
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Questions

Thank you for listening
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