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1Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
2Universitat de Lleida, Catalonia, Spain
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We consider a family of T -periodic, sufficiently smooth,
n-dimensional systems of the form

x ′(t) = F (t, x , ε), (1)

depending on a small (perturbation) parameter ε.

We assume that there exists some nonempty set Z whose points
are initial values for T -periodic solutions of the unperturbed system

x ′(t) = F (t, x , 0). (2)

In the following we consider that Z is the image of some
sufficiently smooth (C 2), one-to-one function ξ : U → Rn, where
U is an open subset of Rk , 1 ≤ k ≤ n, such that Dξ(h) has full
rank for any h ∈ U.

Such a Z will be called a T -period manifold for (2).
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The problem (Poincaré):

Study the existence of T -periodic solutions for the perturbed
system (ε 6= 0 sufficiently small) that are ”close” to the
unperturbed T -periodic solutions.

We say that a T -periodic solution ϕ(t) of (2) persists in (1) if
there exists a T -periodic solution ϕε(t) of (1), for small ε and
lim
ε→0

ϕε(0) = ϕ(0).
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We say that f : U → Rk is a bifurcation function for the problem
of persistence in (1) of T -periodic solutions of (2) that initiates in
Z if:

I for any ϕ(t) with ϕ(0) = ξ(h0) ∈ Z that persists we have
that f (h0) = 0;

I whenever there exists h0 ∈ U such that f (h0) = 0 and the
Jacobian determinant det Df (h0) 6= 0, the solution ϕ(t) with
ϕ(0) = ξ(h0) persists.
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The unperturbed system is T -isochronous

In this case the T -period manifold is the whole space.

I When the perturbed system is in the standard form for
averaging, x ′ = εF̃ (t, x , ε), the unperturbed one is x ′ = 0 and
all its solutions are constant functions.

I The planar system x ′ = −y + x2, y ′ = x + xy has a
2π-periodic center at the origin.

I The solution that initiates in r0 ∈ (0, 1) of dr
dθ = r 2 cos θ

is r(θ, r0) =
r0

1− r0 sin θ
( 2π-periodic for every r0).
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An autonomous system with a limit cycle

The planar system

x1
′ = x2 − x1(x2

1 + x2
2 − 1)

x2
′ = −x1 − x2(x2

1 + x2
2 − 1)

has a limit cycle: x2
1 + x2

2 = 1 of minimal period 2π. This means
that

S1 =
{

(x1, x2) ∈ R2 : x2
1 + x2

2 = 1
}

is a 2π-period manifold of dimension 1.



The symmetric Euler top

ẋ1 = −x2x3, ẋ2 = x1x3, ẋ3 = 0

This system has the following T -period manifolds (for any m ∈ Z)

Zv
m = {(0, 0, h) : h ∈ (2mπ/T , 2(m + 1)π/T )}

Zh
m =

{
(z1, z2, 2mπ/T ) : (z1, z2) ∈ R2 \ {(0, 0)}

}
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A first order bifurcation function

Theorem
We consider the T -periodic, sufficiently smooth, n-dimensional
system (in the standard form for averaging)

x ′(t) = εF̃ (t, x , ε).

Then a first order bifurcation function is

f1(z) =

∫ T

0
F̃ (t, z , 0)dt.

The idea of the proof. Let x(t, z , ε) be the solution of the system
satisfying x(0, z , ε) = z . We consider the Poincaré translation
operator at time T , z 7→ x(T , z , ε) and we introduce the
displacement map δ(z , ε) = x(T , z , ε)− z . One can prove that

δ(z , ε) = εf1(z) + ε2r(z , ε).
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A second order bifurcation function

Theorem
We consider the T -periodic, sufficiently smooth, n-dimensional
system (in the standard form for averaging)

x ′ = εF (t, x , ε) = εF1(t, x) + ε2F2(t, x) + O(ε3).

Then, when f1(z) ≡ 0, a second order bifurcation function is

f2(z) =

∫ T

0
F∗(t, z)dt

where F∗(t, z) = F2(t, z) + (DzF1(t, z))
∫ t

0 F1(t, z)dt.

The idea of the proof.

δ(z , ε) = εf1(z) + ε2f2(z) + ε3r(z , ε).
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Hypotheses on the unperturbed system x ′ = F0(t, x)

I (H1) Z ⊂ Rn is a T -period manifold of dimension k .

I (H2) Z is normally nondegenerate (following the terminology
of Carmen Chicone), that means that the linearized system
around each T -periodic solution that initiates in Z

y ′ = DxF0 (t, x(t, z , 0)) y

has the Floquet multiplier 1 of geometric multiplicity k.



Notations and facts regarding the linearized system
y ′ = DxF0 (t, x(t, z , 0)) y for z ∈ Z

I Denote Φ(t, z) its principal matrix solution

I (H2) means that the kernel of Φ(T , z)− In has dimension k ,
or, equivalently, its range R(z) has dimension n − k

I Rn = R(z)⊕R⊥(z)

I Let πC (z) : Rn → R⊥(z) be the projection

I Both the linearized system and its adjoint have exactly k
linearly independent T -periodic solutions. For the adjoint
system we denote them by

y1(t, z), y2(t, z), ... , yk(t, z)



A first order bifurcation function M : Z → Rk

I Malkin’s expression

Mi (z) =

∫ T

0
yi (t, z) · F1(t, x(t, z , 0))dt, i = 1, k

I Rhouma-Chicone’s expression

M(z) = πC (z)Φ(T , z)

∫ T

0
Φ−1(t, z)F1(t, x(t, z , 0))dt

I Roseau’s expression

M(z) = π

∫ T

0
Y−1(t, z)F1(t, x(t, z , 0))dt,

for some well chosen fundamental matrix solution
Y (t, z) = Φ(t, z)Y (0, z), where π : Rn−k × Rk → Rk is the
projection onto the last k variables.



The system has the form

x ′ = F0(t, x) + εF1(t, x) + ε2F2(t, x) + O(ε3)
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orbits, Methods Appl. Anal. 7 (2000), 85104.

I M. Roseau, Vibrations in Mechanical Systems, Springer 1987.
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A second order bifurcation function f2 : U → Rk

f2(h) = 2(πg2)(ξ(h)) + 2D(πg1)(ξ(h))Sγ(h) +
n−k∑
i=1

γi (h)

[
∂

∂zk+i
D(πg0)

]
(ξ(h))Sγ(h)

where

γ(h) = −
[
D(π⊥g0) (ξ(h)) S

]−1
(π⊥g1)(ξ(h)) ∈ Rn−k



g0(z) = Y (T , z)−1 (x(T , z , 0)− z)

g1(z) =

∫ T

0
Y (t, z)−1F1(t, x(t, z , 0))dt

g2(z) =
1

2

∫ T

0
Y (t, z)−1F∗(t, x(t, z , 0))dt

F∗ = 2F2 + 2(DxF1)
∂x

∂ε
+

n∑
i=1

∂xi

∂ε

∂

∂xi
(DxF0)

∂x

∂ε

∂x

∂ε
(t, z , 0) = Y (t, z)

∫ t

0
Y (s, z)−1F1(s, x(s, z , 0))ds



The unperturbed system is T -isochronous: k = n

In this case g0 ≡ 0 and the bifurcation functions have simpler
expressions f1(z) = g1(z) and f2(z) = 2g2(z).



The idea of the proof

I we consider

g(z , ε) = Y (T , z)−1 (x(T , z , ε)− z)

and note that its zeros are in one-to-one correspondence with
the T -periodic solutions of our system

I we prove that g(z , ε) = g0(z) + εg1(z) + ε2g2(z) + O(ε3)

I we apply the Lyapunov-Schmidt reduction to g(z , ε)



A key fact in the proof

I g0(z) = g(z , 0) = Y (T , z)−1 (x(T , z , 0)− z) and, since ξ(h)
is the initial value of some T -periodic solution of (2), we have
that g0 (ξ(h)) = 0 for any h ∈ U

I Dg0 (ξ(h)) = Y (0, ξ(h))−1 − Y (T , ξ(h))−1 has rank n − k
and its first k lines are null

I there exists some n × (n − k) matrix S(h) such that the
(n − k)× (n − k) matrix π⊥Dg0 (ξ(h)) S(ξ) is invertible
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I A. Buică, J. Giné and J. Llibre, Periodic solutions for nonlinear
differential systems: the second order bifurcation function,
Topol. Meth. Nonlin. Anal. (2012), in press.
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Thank you for your attention!
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