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Introduction

The trigonometric moment problem arises [3] from the study of one-
parameter families of centers in polynomial vector fields. It asks for the
classification of the trigonometric polynomials Q which are orthogonal
to all powers of a trigonometric polynomial P .

We show that this problem has a simple and natural solution under
certain conditions on the monodromy group of the Laurent polynomial
associated to P . In the case of real trigonometric polynomials, which
is the primary motivation of the problem, our conditions are shown
to hold for all trigonometric polynomials of degree 15 or less. In the
complex case, we show that there are a small number of exceptional
monodromy groups up to degree 30 where the conditions fail to hold
and show how counter-examples can be constructed in several of these
cases.

1. Preliminaries

Firstly, there is an equivalence between the tangential center problem
for Abel equations, the moment problem for Laurent polynomials and
the vanishing of certain zero-dimensional abelian integral (see also [2]).

Proposition 1. Let p, q be trigonometric polynomials. The following
conditions are equivalent:

1. The parametric Abel equation

z′ = p(w)z2 + εq(w)z3, (1)

has a “first order center” at the origin.

2. For P,Q the Laurent polynomials associated to primitives of p, q,∮
|z|=1

P k(z) dQ(z) = 0, k = 0, 1, 2, . . . (A)

3. Define P,Q as above, take t close to infinity and number the
pre-images zi(t) of P (z) = t such that {zk(t)}k=1,...,n (resp.
{zk(t)}k=n+1,...,n+m) are the points close to infinity (resp. zero).
Then

n∑
k=1

mQ(zk(t))−
n+m∑
k=n+1

nQ(zk(t)) ≡ 0 for every t ∈ C. (2)

Let P ∈ L be a Laurent polynomial, let GP = Gal(L/C(t)) de-
note its monodromy group, where L = C(z1(t), . . . , zn+m(t))) and
z1, . . . , zn+m are the branches of P−1. We shall number the branches
of P−1 such that σ∞ = (1, 2, . . . , n)(n + 1, n + 2, . . . , n + m) is a
permutation corresponding to a clockwise loop around infinity.

A useful way to represent the monodromy group GP of P is to take
the set of critical values, Σ = {t1, t2, . . . , tr}, and fix t0 a non-
critical value, then consider the graph obtained as a pre-image of
the “star” obtained by joining each of the critical values to t0 with
non-intersecting paths.
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Assume that P = P̃ ◦ W . Consider the partition into disjoint
sets induced in {1, . . . , n + m} by the equivalence i ∼ j whenever
W (zi(t)) = W (zj(t)). This partition is an imprimitivity system and
the elements are called blocks. It holds that the monodromy group
sends a block to itself or to another block. Moreover, if a partition of
{1, . . . , n+m} into disjoint sets satisfy this property, then there exist
P̃ ,W such that P = P̃ ◦W and W is constant on the elements of
the partition.
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A Laurent polynomial P can be written as P̃ (zn), where P̃ ∈ L, or
as P̃ (W ), where P̃ ∈ C[z] and W ∈ L (see [4] or [7]).

2. Main Results

Firstly we provide some sufficient conditions such that (A) holds.

Proposition 2. Suppose that

P = P̃ (zl), Q = Q̃(zl) +
∑
l-i

aiz
i,∮

|z|=1
P̃ k(z) dQ̃(z) = 0, k = 0, 1, 2, . . . ,

(B)

then (A) holds. Conversely, if (A) holds and P = P̃ (zl), Q =
Q̃(zl) +

∑
l-i aiz

i, then∮
|z|=1

P̃ k(z) dQ̃(z) = 0, k = 0, 1, 2, . . . .

That is, when P = P̃ (zl) we can reduce the problem. We determine
this type of decompositions in terms of the monodromy group: P =
P̃ (zl) if and only if

∃B ∈ B ∃B ∈ B, {1}  B ⊆ {1, . . . , n}, (B∗)

where B denote the set of all imprimitivity systems.

Proposition 3. Suppose that

P = Pk(Wk), Pk, Qk ∈ C[z], Wk ∈ L, k = 1, . . . , l,

Q = Q1 ◦W1 + . . . + Ql ◦Wl,
(C)

then (A) holds.

Now we want to determine when (C) is also sufficient in terms of the
action of the monodromy group. Let

V =< σ(m, (n). . .,m,−n, (m). . .,−n) : σ ∈ GP >,

where GP acts permuting the coordinates.

For each block B we define wB to be the vector with (wB)i = 1 when
i ∈ B and 0 otherwise. We define W to be the space generated by all
vectors wB where B runs over all blocks which contain the element
1, including the trivial block B = {1, . . . , n + m}, but not {1}.
Theorem 4. Let P be a proper Laurent Polynomial (P 6∈ C[z], P 6∈
C[z−1]), such that it does not admit a decomposition of the form
P (z) = P̃ (zl) for any l > 1.
Assume that

(1, 0, . . . , 0) ∈ V + W. (C∗)

Then (A) is equivalent to (C).

3.Computations up to degree 30

For a given degree of P there is a finite number of possible monodromy
groups. We check when (B∗) and (C∗) do not apply:

Degree 9 10 16 18 20 24 25 27 30
Groups 34 45 1954 983 1117 25000 211 2392 5712

Exceptions 1 2 6 6 3 3 2 31 10

Theorem 5. For any Laurent polynomial P up to degree 30, if GP
is not one of the exceptional groups in the list above, then Q ∈ L
satisfies (A) if and only if it is reducible via condition (B) to a set of
moment equations of lower degree, or satisfies the weak composition
condition (C).

Each of the exceptional groups above can be realized as the mon-
odromy group of a Laurent polynomial, although it is only possible
to explicitly calculate these polynomials in simple cases. We have
not been able to verify that each exceptional group does indeed give
Laurent polynomials P and Q which satisfy (A) but neither (B) nor
(C), but below we give examples of three of the four simplest cases of
exceptional groups, showing how they indeed give such Q. A fourth
case is considered by Pakovich, Pech and Zvonkin [6].

Group A5(10)

This group is realized by the following indecomposable Laurent poly-
nomial:

P (z) =
(z + d)R3(z)

z5
,

where

R(z) =
(123 + 55

√
5)

2
+

(29 + 13
√

5)z

2
− (2 +

√
5)z2 + z3.

There is a 4-dimensional space of Laurent polynomials Q of degree
lower that P satisfying (A), where (B) and (C) does not hold.

Group E9 : D8

The group is realized by the indecomposable polynomial

P (z) = −(z − 1)4(2 + z)(1 + 2z)4

2z3
.

There is a 3-dimensional space of Laurent polynomials Q of degree
lower that P satisfying (A), where (B) and (C) does not hold.

Group t16n195

The group is realized by the composed Laurent polynomial

P (z) =− 940848 + 665280
√

2 + (89152− 63040
√

2)W (z)

− (2376− 1680
√

2)W 2(z) + W 4(z),

where the composition factor is

W (z) =
−99 + 70

√
2 + (48− 34

√
2)z + (8− 6

√
2)z3 + z4

z2
.

The solutions form a 6-dimensional space, which is bigger that the
dimension of the polynomials satisfying (B) or (C).

4. Real case

Finally, we study when the trigonometric polynomials have real coef-

ficients. Then the condition P̃ (zi(t)) = P̃ (1/zi(t)) holds for real t ,
and this allows us to assume that the monodromy group contains the
dihedral group.

Theorem 6. Let L∗30 be the set of Laurent polynomials up to degree
30 associated to real trigonometric polynomials via z = exp(iθ).
For any P ∈ L∗30, Q ∈ L satisfies (A) if and only if either it is
reducible via condition (B) to a set of moment equations of lower
degree, or it is satisfied condition (C). We can iterate the process
of reduction of (B) so that all Q satisfying (A) can be explained by
these two processes.

Conjecture 7. For every Laurent polynomial P obtained by a change
of variables from a real trigonometric polynomial, a Laurent polynomial
Q satisfies (A) if and only if it satisfies (B) or (C).

Theorem 8. Suppose that deg(P ) = 2n > 2, where n is a prime
number. Then Q ∈ L satisfies (A) if and only if one of the following
possibilities holds:

• P (z) = P̃ (zn), and∮
|z|=1

P̃ k(z) dQ̃(z) = 0, k = 0, 1, 2, . . .

where Q̃(zn) is the sum of the monomials of Q divisible by zn.

• There exist W ∈ L\(C[z] ∪ C[z−1]), P̃ , Q̃ ∈ C[z], such that
P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)).

Thus, (A) holds if and only if (B) or (C) holds.
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