Computing analytically periodic orbits of differential equations

Jaume Llibre¹, Cristina Stoica², <u>Elizabeth Zollinger</u>³

¹ Department de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Catalonia, Spain.

E-mail: jllibre@uab.cat

² Department of Mathematics, Wilfrid Laurier University, Waterloo, N2L 3C5, Ontario, Canada. E-mail: cstoica@wlu.ca

³ Department of Mathematics and Computer Science, St. Joseph's College, Brooklyn, NY 11205, USA. E-mail: ezollinger@gmail.com URL: http://www.mat.ua.aa/~ipdaily

We provide an analytic algorithm for computing periodic orbits of differential equations in dimension $n \geq 2$ having an equilibrium point with eigenvalues $\pm \omega i$ and ρ_k with $\omega \neq 0$ and if $n \geq 3$ then $\rho_k \in \mathbb{R}$ for $k = 3, \ldots, n$. Moreover, our method needs that when we translate the equilibrium point at the origin of coordinates, the non-linear part of the translated differential equation depends on a multiplicative small parameter. We provide two applications of this algorithm, one related with a 3-dimensional differential equation due to E.N. Lorenz.

References

- R. Barboza and L.O. Chua, *The four element Chua's Circuit*, Int. J. of Bifurcation and Chaos 18 (2008), 943–955.
- [2] L. Barreira, J. Llibre and C. Valls, *Periodic orbits near equilibria*, Comm. Pure and Appl. Math. 63 (2010), 331–355.
- [3] E.N. Lorenz, On the existence of a slow manifold, J. of Atmospheric Sciences 43 (1986), no. 15, 1547–1557.