Symplectic surface diffeomorphisms

John Franks¹, Michael Handel²

¹ Department of Mathematics, Northwestern University, Evanston, IL, USA. E-mail: j-franks@northwestern.edu

² Department of Matematics, Lehman College, Bronx, NY, USA.

E-mail: michael.handel@lehman.cuny.edu

Suppose M is a compact oriented surface of genus 0. We establish a structure theorem for area preserving diffeomorphisms of M with zero entropy and at least three periodic points. As an application we show that rotation number is defined and continuous at every point of a zero entropy area preserving diffeomorphism of the annulus.

Further applications give insight into the algebraic structure of $\operatorname{Symp}_{\mu}^{\omega}(M)$, the group of analytic symplectic diffeomorphisms of M. We show that if G is a subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$ which has an infinite normal solvable subgroup, then G is virtually abelian. In particular the centralizer $\operatorname{Cent}(f)$ of an infinite order $f \in \operatorname{Symp}_{\mu}^{\omega}(M)$ is virtually abelian. Another immediate corollary is that if G is a solvable subgroup of $\operatorname{Symp}_{\mu}^{\omega}(M)$ then G is virtually abelian.