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Section 1

Variational Equations



Variational equations

Let us consider a differential equation:{
ẋ = f (x),

x(0) = x0.

Under general conditions:

There exist a unique solution φt(x0) which is smooth w.r.t.
x0,

If we write the Taylor Expansion of φt (w.r.t. x0):

φt(y) = φt(x0) +
∞∑

|k|=1

φ
(k)
t (y − x0)

k ,

Then k!φ
(k)
t = Dk

xk0
φt(x0) can be regarded as the solution of a

differential equation: VEk(f )
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First order variational equations

Given a trajectory φ
(0)
t (x0) of the original system, the first

order variational equation (VE1(f )) is the following linear
system {

d
dtφ

(1)
t = Df (φ

(0)
t )φ

(1)
t ,

φ(1)(0) = In.

Interesting for practical purposes: Newton method, Stability
of orbits, Lyapunov spectrum, control theory, . . .

Classically, VE1(f ) are computed by hand and integrated
numerically together with the original differential equation.
The whole system is of dimension n + n2.
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Example: van der Pool
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Second order and beyond

Sometimes VE1 is not enough: Normal forms, high order
parameterization of invariant objects, integrability criteria, . . .

The second order variational equation VE2(f ) is written as
follows:{

d
dt φ̃

(2)
t = Df (φ

(0)
t )φ̃

(2)
t + D2f (φ

(0)
t )(φ

(1)
t )2,

φ̃(2)(0) = 0.

Remark:

VE2(f ) = VE1(VE1(f )).

In general: VEk(f ) = VE1(VEk−1(f )).
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Example: van der Pool
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Section 2

Automatic differentiation



Automatic differentiation

Automatic differentiation is a procedure to obtain high-order
derivatives of the output of an algorithm w.r.t. the input.

The mathematics behind the curtain are elementary: Taylor’s
theorem and the chain rule.

IDEA: To replace the standard arithmetic with an arithmetic
of truncated power series.

EXAMPLE: Let us consider f (x) = x2 + x and the extended
arithmetic (x + yδ) where x and y are real numbers and
δ2 = 0.

Then,

f (1 + δ) = (1 + δ)(1 + δ) + (1 + δ) = 1 + 2δ + δ2 + 1 + δ

= 2 + 3δ = f (1) + f ′(1)δ.
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Higher order derivatives

A formal power series in one variable δ is an expression of the
form

A =
∑
k≥0

akδ
k .

If f is a smooth function defined on a neighborhood of 0, we
can choose as ak its k-th normalized derivative ak = 1

k! f
(k)(0).

Given an algorithm, we have to replace each operation by the
corresponding one for formal series.
Generally, the output of each operation can be written as a
recursion. For instance,

Aα =
∑
k≥0

ckδ
k , α ̸= 0, 1

with

ck =
1

ka0

k−1∑
j=0

[αk − (α+ 1)j ]ak−jcj , c0 = aα0 ,
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Several variables

In a similar way, we can consider power series of n variables,

A =
∑
m≥0

∑
|k|=m

aks
k , (1)

where k ∈ Nn, |k | = k1 + · · ·+ kn and sk = sk11 · · · sknn .

As before, if f is a C∞ multivariate function defined on a
neighborhood of 0, we can take

ak =
∂k f

k1! · · · kn!
(0).

Then (1) encodes the jet of partial derivatives of f at 0.
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Truncated power series

The computer implementation of these techniques is done
using truncated power series.

If we use order M, the equality C = Aα means that C is a
truncated power series whose coefficients coincide with the
ones of Aα.

Note that this does not mean that they coincide as functions
of their variables.

Aα contains terms of order higher than M that we are
neglecting.

The complexity of all standard operations is similar to the cost
of the product.

The efficiency of the operations depends on the efficiency of
the product of homogeneous polynomials.
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Jorba-Cuscó Jet transport and applications 13 / 34



Truncated power series

The computer implementation of these techniques is done
using truncated power series.

If we use order M, the equality C = Aα means that C is a
truncated power series whose coefficients coincide with the
ones of Aα.

Note that this does not mean that they coincide as functions
of their variables.

Aα contains terms of order higher than M that we are
neglecting.

The complexity of all standard operations is similar to the cost
of the product.

The efficiency of the operations depends on the efficiency of
the product of homogeneous polynomials.
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Section 3

Jet transport



Jet transport

We call jet transport to any algorithm that integrates ODE
but with a truncated power series arithmetic.

xn+1 = xn + hϕf (tn, xn; h).

Jet transport produces the derivatives of the approximation to
the flow given by the stepper.

QUESTIONS:

a) How the error behaves?
b) Does depend on the degree of the jet?
c) How do we choose the step-size?
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Jorba-Cuscó Jet transport and applications 15 / 34



Jet transport

We call jet transport to any algorithm that integrates ODE
but with a truncated power series arithmetic.

xn+1 = xn + hϕf (tn, xn; h).

Jet transport produces the derivatives of the approximation to
the flow given by the stepper.

QUESTIONS:

a) How the error behaves?
b) Does depend on the degree of the jet?
c) How do we choose the step-size?
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Jorba-Cuscó Jet transport and applications 15 / 34



Jet transport

We call jet transport to any algorithm that integrates ODE
but with a truncated power series arithmetic.

xn+1 = xn + hϕf (tn, xn; h).

Jet transport produces the derivatives of the approximation to
the flow given by the stepper.

QUESTIONS:

a) How the error behaves?
b) Does depend on the degree of the jet?
c) How do we choose the step-size?
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Example

Consider (ẋ = f (x),VE1(f )), for x ∈ R.{
ẋ = f (x), x(0) = x0,

ζ̇ = df (x)ζ, ζ(0) = 1.

A step of the Euler method is:{
xn+1 = xn + hf (xn),

ζn+1 = ζn + hdf (xn)ζn.

Using jet transport is

(xn + ζnδ) + hf (xn + ζnδ).

Notice that f (xn + ζnδ) = f (xn) + df (xn)ζnδ +O(δ2)
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Consider (ẋ = f (x),VE1(f )), for x ∈ R.{
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Equivalency theorem

Theorem (Explicit 1-step integrators)

Let us consider the Cauchy problem{
ẋ = f (t, x),

x(t0) = x0,

and a stepper
xn+1 = xn + hϕf (tn, xn; h), (2)

such that
Dxϕf (tn, xn; h) = ϕDx f (tn, xn; h).

Then, applying jet transport of order m to (2) is equivalent to apply (2)
to the ODE (with suitable initial conditions):(

f ,VE1(f ),VE 2(f ), . . . ,VEm(f )
)
,

where

VE k =
1

k!
VEk .
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Some remarks

Equivalent means that when the same input is given, the
same output is produced.

Hypothesis

Dxϕf (tn, xn; h) = ϕDx f (tn, xn; h).

is fulfilled by standard R-K methods and Taylor.

The equivalence theorem is also true for general linear
methods (Butcher, 1966).

If the error of the method is O(hp) on the flow, then the error
on all the derivatives behaves as O(hp).

The step-size has to be computed using all the coefficients of
the jet as they were the coefficients a large ODE.
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Section 4

On power expansions of Poincaré maps



Poincaré maps

A standard tool: The Poincaré map. Reduce dimensionality of
things.

Figure: Source:

Jorba-Cuscó Jet transport and applications 20 / 34

https://www.researchgate.net/publication/262417439_Homotopy_Method_for_Finding_the_Steady_States_of_Oscillators/figures?lo=1


Power expansions of Poincaré maps

Easy case: Stroboscopic map: P(x) = φT (x0).

Tricky case: Spatial Poincaré section Σ.

1. At first order, the differential of the flow is to be projected on
tangent space of the section Σ at the point.

2. To compute higher order we need also the variation of the
return time w.r.t. initial conditions.

3. i.e. we need the derivatives of the flow w.r.t. time.

4. The integration method matters.

5. HINT: Do not use Euler.
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Section 5

The parameterization method



Invariant manifolds

Let F be a diffeomorphism and suppose that:

F (z) = z ,

specDF (z) = {λ, λ2, . . . λn} with |λ| > 1 and |λi | ≤ 1 for
i = 2, . . . , n.

In that case we know that there exist an unstable
1-dimensional invariant manifold related to the fixed point.

That is, there exist an analytic map x : I 7→ U defined for
some interval I such that

F (x(s)) = x(λs). (3)

Equation (3) is called Invariance equation.
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Jorba-Cuscó Jet transport and applications 23 / 34



The parameterization method

Our goal is to compute a semi-analytic approximation of this
parametrization. Let us name:

x(s) =
∞∑
j=0

ajs
j .

We solve the invariance equation order by order.

Order 0 is given by the coordinates of the fixed point.

Order 1 is given by the eigenvector related to λ.
For k > 0, order k + 1 is given by the solution of the linear
system:

(DF (0)− λk+1)x = −bk+1.

Here, bk+1 is the k + 1-th term of the evaluation of manifold
up to degree k by the map F , that is:

F k+1(xk(s)) =
k∑

j=0

bjs
j + bk+1s

k+1.
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Using jet transport

Notice that, the operation

F k+1(xk(s)) (4)

requires the composition of two polynomials of degrees k + 1 and
k . This is an extremely expensive operation.

In our case F is a Poincaré map.

F (x(s) is obtained from the composition of the Taylor
expansion of the flow with the manifold.

The derivatives of F (x(s)) verify some subset of variational
equations.

We can regard operation (4) as an integration of a jet of one
symbol. This can be done efficiently.
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F (x(s) is obtained from the composition of the Taylor
expansion of the flow with the manifold.

The derivatives of F (x(s)) verify some subset of variational
equations.

We can regard operation (4) as an integration of a jet of one
symbol. This can be done efficiently.
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Expanding the manifold

Typically, to compute numerically an invariant manifold, one
iterates a fundamental domain along the unstable
eigendirection.

Sometimes, the points in the fundamental domain are close to
the fixed points, so one needs a large number of iterates to
draw the manifold.

A higher order approximation of the manifold, allows us to
start the iterations far away from the fixed point.
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Stopping criterion

At each step k we have to:

Integrate a jet with 1 symbol and order k.

Solve a linear system of dimensions n × n.

Moreover:

We can scale the parameterization to have radius of
convergence 1.

We stop the computation when the gain of radius of
convergence is less than 1/100.
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Example: Henon-Heiles at h = 0.1
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Figure: Each of the globalizations took around 40 seconds, and 7 or 8
iterations of the fundamental interval with 104 equispaced points in it.
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Section 6

Computing a splitting



Splitting

ẋ = y ,

ẏ = − sin x + µ sin
t

ε
.

y

x

Γ+

Γ−

α

x

y

zn

P (zn)P−1(zn)

Figure: Sketch of the pendulum phase space; in the unperturbed case
(left)the (un)stable manifolds coincide while in the perturbed one (right)
intersect transversally.
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Computing the angle

1. We select a F. D. J , close enough to the fixed point.

2. We compute m such that Pm(J) crosses the vertical axis
{x = 0}.

3. We compute the parameter s∗ ∈ J for which Pm(Ku(s
∗)) is

on the vertical axis {x = 0} at a point y = y∗.

4. We approximate, by means of numerical differentiation, the
tangent vector of the manifold at (0, y∗).

5. Using the tangent vector, we compute α∗.

6. The splitting angle is α = 2α∗
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Jorba-Cuscó Jet transport and applications 31 / 34



Computing the angle

1. We select a F. D. J , close enough to the fixed point.

2. We compute m such that Pm(J) crosses the vertical axis
{x = 0}.

3. We compute the parameter s∗ ∈ J for which Pm(Ku(s
∗)) is

on the vertical axis {x = 0} at a point y = y∗.

4. We approximate, by means of numerical differentiation, the
tangent vector of the manifold at (0, y∗).

5. Using the tangent vector, we compute α∗.

6. The splitting angle is α = 2α∗
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Comparison

Order TM (s) It OAF TS(s) Total(s)
1 384 32 29 29

8 <1 84 7 21 <22

12 <1 59 5 16 <17

16 1 45 3 12 13

20 3 37 3 10 13

32 11 24 2 7 18

50 40 16 1 4 44

78 146 11 0 3 149

Table: Metrics for the computation of the splitting using different orders
and a mantissa of 65 digits.

Note: ε = 1/32, µ = 1/1024, λ ≈ 6/5, α = O(10−23).

Jorba-Cuscó Jet transport and applications 32 / 34





Questions?
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