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1. Traditional definition of codimension
[Dumortier,Roussarie,2009] hy = h; = 0 (a classical Liénard
system)

x = y—x*+x>h(x,\)
y = €(b(A) — x+ x*hy(x,€,X) + yhs(x, y,€, X))

Ny x = y—x>+x3h(x,\)
>{y' = €(b(X) = x)

The Hopf point has codimension j + 1 > 1 if

hy(x, M)+ by (—=x, Ag) = ax® + OB T2), "a # 0.
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- use complex coordinates—>compute the normal
form—>use polar coordinates—>/;
Lyapunov Coefficients for Degenerate Hopf Bifurcations
- Y. A. Kuznetsov, 1999->the second Lyapunov coeff.

J. Sotomayor, L. F. Mello and D. C. Braga, 2007->the
third and fourth Lyapunov coefficients

- the long expressions for these coefficients have been
obtained with the software MATHEMATICA

- A. Gasull and J. Torregrosa, 2001->algorithmic
procedures to write the expressions for the Lyapunov
coefficients

- DeMaesschalck, Doan, Wynen, 2021->the criticality of
the Hopf bifurcation without normal forms

- Use a fractal approach instead of the differential approach
to find the codimension!
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1. Differential interface —> 2. Fractal interface
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- lLetd>0and § ~ 0

- U(0)=the d-neighborhood of a bounded U C R
(sometimes called the Minkowski sausage)

- |U(0)|=the Lebesgue measure of U(0)

- the lower box dimension:

In |U(5)|)

T e

- the upper box dimension:

=5 : In |U(5)|
d et i
IMadd 'Tj‘é‘p< Ino )

- dimgU=the box dimension of U
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- The bigger the box dimension of the sequence, the higher
the density of the sequence (—>more limit cycles can be
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Example




Define a fractal sequence Uy = {yo, %1, 2, - - -

} — ol




Compute the Minkowski (or box) dimension of U!

In k
dimgUp = lim : (Cahen-type formula)
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Compute the Minkowski (or box) dimension of U!

In k
dimgUp = lim : (Cahen-type formula)
k—o0 — In(yk 7 yk+1)

dimBUo = lim
k—oo 1 — _'I"ykk
n

(Borel rarefaction index of Uy)

(0]

In (k(}/k = Wit ) o Yk)
In (Yk—;/kJrl)

dimp Up = fim (1—

—00

) (tail and nucleus)

dimg Uy can take the following discrete set of values:
135

§’g77.,.-..71 ;

—Zubrinic,Zupanovic, 2007,2008



Fractal codimension:
If dimg Uy < 1, we say that the Hopf point has finite fractal
codimension j + 1 > 1 where

3dimg Uy — 1

e No.
I e NN A

If dimg Uy = 1, then we say that the fractal codimension is
infinite.
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Xo,x has a set of non-isolated singularities Sy for each A ~ .
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A slow fast Hopf point is intrinsically defined!! (see [De
Macsschalcle Dttt e
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Assumption We assume that /(, 5) # 0
I(Pk+1>Pk) =0or l(pkvpk-i-l) =0



Assumption We assume that /(, 5) # 0

I(Pk+1>Pk) =0 or l(pkvpk-i-l) =0
S={p« | k =0}



Theorem
Consider a smooth slow-fast system X. .. Let S be a fractal
sequence defined above. Then dimg S exists and

2] +1

dimgS € { = e Not U {1}

ms S €z |j € N} U {1}

Furthermore, the Minkowski dimension of S is a coordinate
free notion which does not depend on the choice of the section
o, the first element py of the sequence (px)k>o from S, and

the metric on M.



Definition
If dimg S < 1, we say that the contact point p for A = )\ has
finite fractal codimension j + 1 > 1 where

3dimBS— 1
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If dimg S = 1, then we say that the fractal codimension of p is
infinite.
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Theorem
Consider a smooth slow-fast family X., = Xo» + €Qx + O(€?)
that has a slow-fast Hopf point p at ).
1. If the fractal codimension of p is equal to 1, then
Cycl( X, p) < 1.
2. If p has finite fractal codimension j+1 > 1 and of Liénard
type, then Cycl(X; x, p) is finite and bounded by j + 1.

3. If X.x is analytic on an analytic surface M, then
Cycl(Xe.x, p) is finite. Moreover, if p has finite fractal
codimension j +1 > 1, then Cycl(Xc,p) <j+ 1.



Theorem
Consider a smooth slow-fast family X., = Xo» + €Qx + O(€?)
that has a slow-fast Hopf point p at ).
1. If the fractal codimension of p is equal to 1, then
Cycl( X, p) < 1.
2. If p has finite fractal codimension j+1 > 1 and of Liénard
type, then Cycl(X; x, p) is finite and bounded by j + 1.

3. If X.x is analytic on an analytic surface M, then
Cycl(Xe.x, p) is finite. Moreover, if p has finite fractal
codimension j +1 > 1, then Cycl(Xc,p) <j+ 1.

a generalization of [Dumortier,Roussarie,2009]



The notion of fractal codimension can be defined for any
contact point when the contact order ¢, (p) of p is even, the
singularity order sy, (p) of p is odd and p has finite slow
divergence, i.e. sy,(p).-< 2(ny,(p) — 1).



The notion of fractal codimension can be defined for any
contact point when the contact order ¢, (p) of p is even, the
singularity order sy, (p) of p is odd and p has finite slow
divergence, i.e. sy,(p).-< 2(ny,(p) — 1).

(Huzak,2017), (Huzak,Vlah,2018),
(Crnkovic,Huzak,VIah,2021), (Dimitrovic, Huzak, Vlah,
Zupanovic, 2021), (Huzak, Vlah, Zubrinic,Zupanovic,2022)
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Calculating the Minkowski dimension in a normal form for
C°-equivalence

{ x4 =y mbaas)

y = €(glx6A)+(y—f(x,A) hx,y,e A)),
where f, g, h are smooth, £(0, \o) = 2£(0, \o) = 0

The contact order n > 2 is the order at x = 0 of f(x, o)
The singularity order m > 0 is the order at x = 0 of

g(X, O, /\0)

We suppose that n and m are finite and write

f(x,\o) = x"f(x)



Calculating the Minkowski dimension in a normal form
If £(0) > 0 (resp. £(0) < 0), then the smooth diffeomorphism

(x,y) = (<FGT) (resp. (x,9) > (—x(~F(x)", )

brings the system into

X =1y ="
{y' = e(g(x,€) +(y —x") h(x,y,€)),

upon multiplication by a smooth strictly positive function



Calculating the Minkowski dimension in a normal form
If £(0) > 0 (resp. £(0) < 0), then the smooth diffeomorphism

(x,y) = (<FGT) (resp. (x,9) > (—x(~F(x)", )

brings the system into

X =1y ="
{y' = e(g(x,€) +(y —x") h(x,y,€)),

upon multiplication by a smooth strictly positive function

g(x,0) = gnx™ + x"g(x)

where g,, = 1 and g is a smooth function.



Calculating the Minkowski dimension in a normal form
Definition
We say that the contact point p = (0,0) has finite (fractal)
codimension j +1 > 1 if

E(x) +E(=x) = ax¥ + O(x¥%), a #0.

If j with the above property does not exist, we say that the
codimension is infinite.



Calculating the Minkowski dimension in a normal form

Definition
We say that the contact point p = (0,0) has finite (fractal)
codimension j +1 > 1 if

E(x) + E(=x) = ax¥ + O(x¥*2), a # 0.

If j with the above property does not exist, we say that the
codimension is infinite.

Finite slow divergence: m < 2(n —1).

~ }71/" 1 n—1\2
y,y)=— (nx""")%dx

_yl/n g‘(X7 O)
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Figure: A fractal sequence startina at (0, yy) defined
near the contact point (x,y) = (0,0) where
aly) = {(=y*", y)} is the a-limit of the fast orgit

throuah y € 0 and w(y) = {(y¥/", y)} is the w-limit of the
same orsit. (8) We use [(yki1,yk) = 0 to cenerate

(yk)kzo. () We use I(yk,yk_H) =0 to generate (yk)kz(y



Theorem
Suppose that the normal form has finite fractal codimension
j+1>1. Then S is Minkowski nondegenerate and

2j +1

dimaee s o
S e 57

€]o, 1[.

Moreover, when the codimension is infinite, we have

dimg S = 1. The results do not depend on the choice of the
initial point yy €]0, y*[.
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The slow divergence integral is invariant under C*>°-equivalence

(5,27 ) ~—> (102F ()
it




A two-stroke oscillator
{ XSO )
v e o) (0 y)SRe(s - vx),

where a, 3,7, > 0 and € > 0 is the singular perturbation
parameter.



A two-stroke oscillator

{X = "y(o—vy)
v e o) (0 y)SRe(s - vx),

where a, 3,7, > 0 and € > 0 is the singular perturbation
parameter.

Following Wechselberger (2020), we deal with a slow-fast Hopf
point (in a non-standard form) at p = (a9, d), for § = avd.



[
dimglUy = I|m B (Cahen-type formula)

k=00 — In(Yic — Yi+1)

dimglUy = klim (Borel rarefaction index of Uj)
— 00

|
T

or
In (k(yx — o

dimgUp = Im;o (1— ( (lj;k(yky’;;ll)) yk)) (tail and nucleus)
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#lter| o |a| 0 | v | B | Theo. Value | Results
1000%] RIS T 1 | T =80.3333..." {10.335137
1000° | 11 &1 [10] 10| ; =10:3333... [0.335137
1000. |- 4.1 ['2eF TIRAE 0 = 28073333, [.0.324280
1000 [ 10T | G510fEEs0 |13 2803333, [ 0.331570

Tarle: Numerical results for the two-stroke oscillator.
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