Invariant algebraic manifolds for ordinary

differential equations

Maria V. Demina
maria_dem®@mail.ru

National Research University Higher School of Economics, Moscow, Russia

Online GSD-UAB Seminar
November 20, 2023

1/44



Invariant manifolds

@ Polynomial differential system
t;=Xj(x), = (v1,...,2,), Xj(x)eClz], 1<j<n

@ Polynomial vector field

0 0

@ Invariant manifold M C C”
sspeM = VteR z(t;so) € M, where x(0;s0) = s
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Invariant algebraic manifolds

@ Invariant algebraic manifold M C C" of codimension k,
1<k<n-1

M = ({Gj(x) = 0, Gyx) € Cla}

@ Polynomial ordinary differential equation

dx d"z
E: FE (x,E,...,@) =0, FE(s1,---,8m21) € Cls1,...,Spi1]

@ A compatible with £ polynomial ordinary differential equation of
degree n — k defines an invariant algebraic manifold M of

codimension &
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Invariant algebraic manifolds of codimension n — 1

@ Reduction of order E: FE (:1: de dnx) =0

y dt A
Gr=y(@)
H - H<xyj—gjxy) —0
: : dz
o Compatible equations: F (:1:, E) =0 = F(z,y)=0

e F(z,y) € Clz,y| is called an algebraic invariant

dt

solution of equation (F)

x(t) such that F' | z, —) = 0 is called an algebraically invariant
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Finding algebraic invariants

The Poincaré problem

For a given polynomial vector field X5p find an upper bound on the
degrees of its irreducible algebraic invariants: P(Xsp).

Partial solution 1. (D. Cerveau, A. Lins Neto, 1991)

If all the singularities of irreducible invariant algebraic curves are of
nodal type, then the following estimate is valid: P(Xop) < deg Xop + 2.

Partial solution 2. (M. M. Carnicer, 1994)

If there are no dicritical singularities of the vector field Xop on
irreducible invariant algebraic curves, then the following estimate is

valid: P(Xyp) < deg Xop + 2.
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Finding algebraic invariants

The methods of finding algebraic invariants (2D)

@ The method of undetermined coefficients (the method of Prelle and
Singer)

@ The Lagutinskii's method (the method of the extactic polynomial)

@ Decomposition into weight-homogeneous components:
XY FO = XO(z,4)FO, \O(z,3) € Clz,y]

@ Methods, based on symmetries

@ The method of fractional power series (Puiseux series)
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Finding algebraic invariants

@ Fields of Puiseux series

Coo{z} = {y(az) = Z bkas%o_

3|
8
o
I
8
——

Cpo{z} = {y(x) = ch(x — :EO)ZFOJF%, Ty € C}

k=0

@ Rings of polynomials over the fields of Puiseux series

Coo{z}ly], Cu{z}y]
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Finding algebraic invariants

Projection operators:

{W(x,y)} yields the polynomial part of W(z,y) € Coo{x}[y];
{W(z,y)}_ yields the non-polynomial part of W (z,y) € Coo{z}]y].

The Newton—Puiseux theorem
Any solution y(z) of the equation F'(z,y) =0, F(x,y) € Clx,y] \ C[z]
can be locally represented by a convergent Puiseux series.

We are interested in Puiseux series satisfying the equation
dy dnfly
H: H(z,y— ...,.— ] =0
( T dzn—1
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Finding algebraic invariants

Theorem 1 (M. V. Demina, 2018)

Let F(x,y) € Clz,y] \ Clx] be an irreducible algebraic invariant of
equation (E). Then F(x,y) takes the form

F(x,y) = {/L(aﬁ) H{y = yj,oo(fﬂ)}} . p(z) € Clz],

+

where Y1 (), ..., YNoo(T) are pairwise distinct Puiseux series from the
field Coo{x} that satisfy equation (H ).
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Finding the polynomial u(x)

Theorem 2 (M. V. Demina, 2021)

Let F(x,y) € Clz,y] \ Clx] be an irreducible algebraic invariant of
equation (E). If o € C is a zero of the polynomial 1i(x), then the
following statements are valid:

@ At least one Puiseux series from the field C, {x} that has a negative
exponent in the leading-order term solves equation (H ).
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Finding the polynomial u(x)

o If the number of distinct Puiseux series from the field C, {z} that
solve equation (H) and have negative exponents in leading-order
terms

Yj. o (T) = C(J’)(m — 20)"% + o ((z — 30) %), ) £0,

1

;€Q ¢>0 1<5j<LeN @)
L

is finite, then the following inequality my < qu holds, where
j=1

mg € N is the multiplicity of the polynomial u(z) at its zero .
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The uniqueness properties

Theorem 3 (M. V. Demina, 2021)

Suppose for some xy € C a Puiseux series y(x) from the field C, {x}
satisfies equation (H ) and possesses uniquely determined exponents and
coefficients. Then there exists at most one irreducible algebraic invariant
F(z,y) € Clz,y| \ Clz] of of the related equation (E) such that this
series is annihilated by F(x,y), i.e. the series y(x) solves the equation
F(z,y) =0.
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The uniqueness properties

Theorem 4 (M. V. Demina, 2021)

If for some x, € C the number of distinct Puiseux series from the field
C,,{x} that satisfy equation (H) is finite, then the related equation
(E) possesses a finite number (possibly none) of irreducible algebraic
invariants. Moreover, the number of pairwise distinct irreducible algebraic
invariants does not exceed the number of distinct Puiseux series from the
field C, {x} that satisfy equation (H ).
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The Poincaré problem

The finiteness property (Af,f)

©Q There exists only a finite number of Puiseux series from the field
Coo{x} that satisfy equation (H).

@ There exists only a finite number of complex numbers 2y € C and a
only finite number of Puiseux series belonging to each of the fields
C,,{x} that have negative exponents in the leading-order terms and
satisfy equation (H).

Theorem 5 (Partial solution 3, M. V. Demina, 2022)

Let (H ) belong to the set Ay s, then the Poincaré problem for the
related equation (E) has a solution: P(F) < deg” H.
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Finding algebraic invariants

The method of Puiseux series

@ Find all Puiseux series (centered at finite points and infinity) that
satisfy equation (H).

@ Consider all possible factorizations of algebraic invariants in the ring
Coofz}y]-

@ Construct and solve the algebraic system resulting from the

condition N
{,u(x) H {y — yoo](év)}} = 0.
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Finding algebraic invariants

Power geometry

@ Newton polygon of equation (H).

@ Dominant balances Uly(x), x| and reduced equations Uly(x),z] = 0
related to the vertices and edges of the Newton polygon.

© Power asymptotics y(z) = bpa™, by € C\ {0}, z = o0 or z — 0
Q@ Fuchs indices or Kovalevskaya exponents: V (j) =0
oU Ulboz™ + sz x| — Ulbyz™, x| -

@[box ,x] = £1_I>I(1) . =V(j)x
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Finding algebraic invariants

Computational aspects

@ finite number of admissible Puiseux series:
{Yjo(w) € Cocf{a},j=1,... N} = deg, F < N

@ infinite number of admissible Puiseux series:
M

> (Bn)=Mo, keN

m=1
Lemma (M.V. Demina, 2021). If for some M, € N this system has a

solution (31, ..., Ba,) with By, # B, whenever my # my, then all other
solutions of this system exist only when M = [M,, where [ € N\ {1},
and in such case involve [ multiple roots for each element of the tuple
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Exact solutions

P, Uy, Ug, Urry Usr, Ugsy . .) =0, u(s,7) =x(t), t=s+uvT

t

(a) Kink (b) Periodic wave (c) Solitary wave

Figure: Examples of traveling waves 184



Meromorphic solutions

W-meromorphic functions

e Elliptic functions
@ Meromorphic simply-periodic functions of the form

z(t) = R(exp{at}), R(s) € C(s), ae€C\{0}
Theorem 6 (C. Briot, T. Bouquet)

Any W-meromorphic function x(t) satisfies an algebraic first order
ordinary differential equation F(x,z;) =0, F(x,y) € Clz, y].
Conclusion:

W-meromorphic solutions are algebraically invariant solutions
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Meromorphic solutions

(E) : ZEj[x(t)] —0, Ejz(t)] = a;z® {%}h - {Zf—]\f}jM

M
@ Degree of the differential monomial E;[z(t)]: degE; = ij
m=0

The finiteness property

There exists only a finite number of formal Laurent series of the form
+00

x(t) = Z apt™?, p € N that satisfy equation (E).
k=0
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Meromorphic solutions

Theorem 7 (A. Eremenko, 2007)

All transcendental meromorphic solutions of equation (E) are W-

meromorphic functions whenever (F) has the finiteness property and only
one dominant differential monomial.

Theorem 8 ( M. V. Demina, 2019)

All transcendental meromorphic solutions of equation (E) are W-
meromorphic functions whenever (FE ) has the finiteness property and only
two dominant differential monomials of the form z'(x; — Bz), | € N,

g e C.
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Meromorphic solutions

Theorem 9 (M. V. Demina, 2022)

Let x(t) be a W-meromorphic solution of equation (E). Then there exist
an irreducible in Clx,y] \ C[z] polynomial F(x,y) and a number N € N
such that x(t) satisfies the algebraic first-order ordinary differential
equation F(x,x;) = 0 and the polynomial F(x,y) takes the form

F(x,y) = {H {y - yj,oo(:r)}}

In this expression Y1 oo(), ..., Ynoo(x) are pairwise distinct Puiseux
series centered at the point x = oo that

_|_
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Meromorphic solutions

(A): solve equation (H);

(B): possess the leading-order terms given either by béj)a: or by
b(gj)a;(p:i*l)/pf, where béj) # 0 and p; € N is an order of a pole of
(t);

(C): satisfy the conditions
N
{Zyjoo(:c)} =0, 1<k<N.
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Meromorphic solutions

Explicit expressions of W-meromorphic functions

Q genus 0
( 1)k (m) dk_l
Z hi exp (2wkz) — w Z {Z p’;(’“ - } coth (w{z — zn})
k=K,
Q genus 1

M Pm k (m k—2 M
w(z) =Y {Z ( (i)_ 1)—k Cik : } oz — zm) + g (2 = Z) -+ ho,

M
Z agzz)_l =0.
m=1
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The integrability problem (2D)

@ Polynomial vector fields V' ¢ Cm+2)m+1-l 5 (C\ {0})!

0 0
X = Pz,y)5-+ Q(w,y)a—y, P(z,y),Q(z,y) € Clz,y]

@ Polynomial systems of ordinary differential equations

xt:P(x,y), yt:Q(xay)
Problems
© Find the functional classes of first integrals that vector fields from
V' can have.

@ Find all the vector fields from V' having a first integral from some
functional class.
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The integrability problem (2D)

Functional classes of first integrals

rational;
meromorphic;
Darboux;
Liouvillian
Darboux functions
K
G(a,y) = [[ F"(@.y) exp{R(@,y)},  Rlx,y) € Cla.y),
j=1

Fi(z,y),...,Fx(x,y) € Clz,y], dy,...,dg €C
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The integrability problem (2D)

Liouvillian functions
belong to the following differential field extension of the field of rational
functions C(z, y):
(C(ZE,Q)ZK()CKl C...CKy=1L, Kj+1:Kj(S), A:{&;,@y}

@ s is an algebraic element over Kj;
@ s is a transcendental element over K; such that

Vo e A=dse Kj;
@ s is a transcendental element over K; such that
0s
Voe A= — € Kj.
s
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The integrability problem (2D)

Differential form: w = Q(x,y)dzr — P(z,y)dy
Integrating factor:  M(z,y): D Cc C?> - C

o M(x,y){Q(z,y)dx — P(x,y)dy} = dI(x,y);
o M(z,y) €CY(D) = XM = —div(X)M, div(X) =P, +Q,;
@ symplectic form: Q = M (z,y)dx Ady, (x,y) € D.
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The Darboux theory of integrability (2D)

Theorem 10 ( J. Chavarriga et al., 2003; C. Christopher et al., 2019)

A polynomial vector field X is Darboux integrable if and only if it has a
rational integrating factor.

Theorem 11 (M. F. Singer, 1992)

A polynomial vector field X is Liouvillian integrable if and only if it has a
Darboux integrating factor.
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The Darboux theory of integrability (2D)

Darboux functions

K
M(z,y) = [[ F"(@.y) exp{R(z,)}, R(z.y) € C(z,y).

Jj=1

Fi(x,y),...,Fx(x,y) € Clz,y], di,...,dg €C

Theorem 12 (C. Christopher, 1999)

If a Darboux function M (x,y) is an integrating factor of a polynomial

vector field X, then Fi(x,vy),..., Fx(x,y), exp{R(x,y)} are invariants
of the vector field X .
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Invariants

Invariants of a polynomial vector field X
@ Algebraic invariants (Darboux polynomials)
F(z,y) € Clx,y]\C: XF = Xx,y)F, Xe€Clzx,y]
A(z,y) is called the cofactor of F'(z,y)

@ Exponential invariants (multiple algebraic invariants)

s {322

o(z,y) is called the cofactor of E(x,y)

} :XE =o(z,y)E, S,T,0 € Clx,y]
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The integrability problem (2D)

Integrability conditions

K
: S
@ Darboux first integrals: [ = HFJ.dJ (z,y) exp{ (z,y)
j=1

> didi(a,y) + ola,y) = 0;

j=1

K
: S
@ Darboux integrating factors: M = H Fjdf (z,7) exp { (7, y) }
j=1

K
Zdj)\j(xv y) + Q(I; y) = —divX

g=1 32/44



Finding the cofactor of an algebraic invariant

(H):  Ple,y)ys — Qr,y) = 0
Theorem 13 (M. V. Demina, 2021)

The cofactor A(xz,y) of an a/gebraic invariant F(x,y) reads as

400 N 4o L m
{ZZ{Q” ymigwx}(ym +PwyZZZifil},

m=0 j=1

where Y1 «, - .., Ynoo € Coo{z} and satisfy equation (H), x1, ..., xr, are
pairwise distinct zeros of the polynomial u(x) € Clx| with multiplicities
v1, ..., v € Nand L € NU{0}.
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Finding exponential invariants

Theorem 14 ( M. V. Demina, 2018)

Suppose that a polynomial vector field X admits an exponential invariant
E = exp(g/f) related to the algebraic invariant f(x,y) € Clz,y] \ C[x]
with the cofactor \(x,y) € Clz,y|, then for each non-zero Puiseux series
Yj.0o(x) centered at the point x = oo that satisfies the equation f(z,y) =
0 there exists a number g € QQ such that the Puiseux series for the function
A2, Yj0o()) /P2, yj(x)) centered at the point x = oo is

M@, gioo(@) S 5
Paoyn(e) ~ 2"

34/44



The Puiseux integrability

Local invariants of a polynomial vector field X
@ Elementary algebraic invariants
F(z,y) =y — yjao(2) € Co{}ly], F(z,y) = yja,(2) € Cpp{z},
XF = XNz, y)F, Maz,y) € C, {z}]y]
@ Elementary exponential invariants

E(z,y) = exp [gl(a:)yl] , agi(z) € Cpo{x}, 1eNU{0};

= ex uz,y) (T x
Bl y) = exp [{y - yj,xo(fc)}”]  Yi0(®) € Cn

u(z,y) € Cp{x}y], n € N; XE = o(z,y)E, o(z,y) € Cpp{z}[y]
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The Puiseux integrability

Definition (M. V. Demina, J. Giné, C. Valls, 2022)

A polynomial vector field & is called Puiseux integrable near a line {7 =
xo,y € C}, xy € C if it has a formal integrating factor

(@9)\ 1)
M(:U,y):eXp{?(x’Z)}HFfj(x,y), K e NuU {0},

J=1

where Fi(z,y), ..., Fx(z,y), g(x,y), and f(z,y) are Puiseux
polynomials from the ring C, {z}[y] and dy, ..., dx € C.
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Polynomial Liénard equations

2 + ()2 + g(z) = 0, ( ),9(x) € Cla], f(z)g(x) #O;
Ty =Y, —f(x)y — g(z).

@ Polynomial vector fields

0 0
X =yy — (fla)y+ g(w))a—y
@ Abel differential equations

the second kind :  yy, + f(x)y + g(x) =0,
1
P fla)w? =0, w(z) = ——

the first kind : w, — g(z)w
g9(x) o)
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Polynomial Liénard equations

Lym = {y% — (f(x)y + 9(96))(% : deg f=m, degg = n}

m > n, (ma TL) # (07 O)

@ Vector fields from L, ,,, do not have algebraic invariants provided that
g(x) # Cf(z), C € C; [K. Odani, 1995].

@ Vector fields from L,, ., are not Liouvillian integrable provided that
g(x) # Cf(x), C € C; [J. Llibre, C. Valls, 2013].
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Polynomial Liénard equations

vy + f(@)y +g(x) =0, degf=m,degg=n

b Q I Qa 19
Q % 0 % &2 %7
(a):m<n<2m+1 (b): n=2m+1 (0):2m+1<n

Figure: Newton polygons
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Polynomial Liénard equations

Lum = {ugp = (Faly+ gD+ dewf = m, dogg =n |

m<n, (m,n)#(0,1)

@ A generic vector field from L,, ,,, is not Liouvillian integrable.

@ Vector fields from L, ,, are not Darboux integrable provided that
n # 2m + 1.

© For any n and m there exist vector fields from L, , that are
Liouvillian integrable.

@ The problem of Liouvillian integrability is solved completely provided
that n # 2m + 1. In the case n = 2m + 1 our results are complete

in the non-resonant case.
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Polynomial Liénard equations

Example: a family of Liouvillian integrable vector fields from L, ,,

f(x) = (k Z 2l)wl_1wx, g(x) = g (W' + 48w ) w,, w(x) € Cla]

m+1 n+1 &k
C, d = =—, (lLk)=1
/3E Y egw l 7m+1 l)(?)

@ Liouvillian first integral:

11 13 u+w)?\ (20—Fk)(2y+wh)
I =oF 2,24+ —;=;—
(z.y) =2 1(2’2+k’2’ 4Bwk Akw' Bi+E

),z = (y + %)2+Bw’f
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e Darboux integrating factor: M (z,y) = (5t

Y.
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Invariant algebraic manifolds of codimension n — 2

@ Reduction of order EF: FE (x dr dnx) =0

dt > din
U =yt

H: H(x,8YsYs,...) =0, 8=
dr d%z
Tdt’ de?
o F(x,s,y) € Clx,s,y| is called an algebraic invariant

dr dx
x(t) such that F (x df D

invariant solution of equation (F)

dz
dt
e Compatible equations: F' (a:' ) =0 = F(z,s,y)=0

) = 0 is called an algebraically
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Invariant algebraic manifolds of codimension n — 2

@ Functional Puiseux series

Cr{s} = {y(w, s) = Zbk(x)s%o_%, Ty = oo} ;

k=0
Comist = {y(az $) =Y anl(m)(s — so(x)* T, € C}
k=0

@ Factorization
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© The method of Puiseux series is a power and visual method of finding
algebraic invariants and solving the Poincaré problem.

@ The Darboux theory of integrability combined with the method of
Puiseux series provides the necessary and sufficient conditions of
Liouvillian integrability for polynomial systems in the plane.

© The method of Puiseux series admits a generalization to higher
dimensions.
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