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1. Introduction

Sexual transmitted diseases (STDs) are a nice example of the interplay

between epidemic spread and human behaviour

Figure 14. Gonorrhea — Rates of Reported Cases by
Year, United States, 1941-2018
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* Per 100,000.
NOTE: See section A1.3 in the Appendix for more information on gonorrhea case
reporting.
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Their dynamics are modelled by means of an Susceptible-Infected-

Susceptible (SIS) epidemic model because there is no immunity after

recovery (medical treatment).

Their time evolution has been linked to that of HIV.

Social perception of the risk linked to STDs changed a lot after the

appearance of the HIV antiretroviral therapy in the mid 80s

GSDUAB seminar

BENEFITS OF HIV
TREATMENT

With HIV treatment,

you can bring the Ve
virus to an
undetectable level
to stay healthy &
prevent passing
HIV to others.

HIV/Q



2. SIS models

Basic model: L
incidence rate

ds I
= —BS + 01,

dl
dt

I
8BS |~ oL,

with S+ I = N. B: transmission rate, J: recovery rate.

With birth and death processes (demographics):

ar _
dt

ds I
— =B S + 01— pS,

I
— 5T —qul
i BSN 01 — pl,

B: recruitment rate of the population.

dN
w: natural mortality such that N = const. (dt =B —uN = 0)
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Neglecting the equation for S (because S + I = N) and without

demographics, the model reduces to

dI I S
< = BS% — ol = (ﬁN—é)I.

At the beginning of the epidemic, S ~ N:

dl dI .

B

Ry = g: basic reproduction number

= mean # of cases directly caused by an infected individual

throughout its infectious period in a fully susceptible popul

1
S: mean duration of the infectious period.
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Dividing by IV, the equation for the fraction of infected individuals is

di . . .
dt=<§51>51=(R051)5z, s+i=1
R. = Rys: effective reproduction number.

Linearising around the DFE! (s*,i*) = (1,0), it follows

di

ol =B-nii — i(t) ~ ig oD,

s=1

— A = (Ro — 1) d: the initial epidemic growth rate.

1 1

Endemic equilibrium: (s*,:*) = (R’ 1- Yo
0 0

) —_— R0>1.

The instability of the DFE guarantees the existence of an endemic equil.

!DFE: Disease-Free Equilibrium
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More sophisticated SIS/SIR models

The transmission rate 8 can be thought as 8 = ¢8y where c is the

contact rate and fy is the per-contact probability of transmission.

The number of contacts can change over time (social distancing) as well

as the transmission probability 3y (prophylactic measures).

Different assumptions on the transmission rate f3:

B depends on the population size N: 8 = S(N).

< Saturation of the number of contacts per unit of time.

B depends on the prevalence of the disease I: 8 = S(I).

< Introduction of behavioural responses.
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Two examples of incidence rates

Capasso & Serio (1978): SIR model

ds dI dR
2 2SI, =X =51
7 g(I)s, pn g(I)s ; ,

dt
(S+I+R=N)

U]
am 9

F16. 1 (a) An asymptotically saturating g is illustrated. (b) A function g which takes
into account “psychological” effects is illustrated.
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Ruan & Wang (2003): SIR model with demographics

ds kI? dl kI?

© _p_ _ Y B o ()
dt Trap 2 TOR=0S = e S Wk
dR dN

v: rate of immunity loss; « > 0.

Rescaling the equations for I and R, it follows

ay

= gX -y,
=1 :

ax X2
A A-X-Y)-mX
0 T ) —mX,

Theorem 2.9. There are at least two limit cycles in (1.3) for some parameters.
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SIS at the level of nodes

Van Mieghem et al.(2009): The N-intertwined SIS model

The equation for the probability p;(t) for the node i of being infected at
time ¢ under the usual assumption of statistical independence among the

state of its neighbours (p(S; N I;) = ps, - pr; = (1 — p;i) p;) is given by

dp
- = BO —Di 2 ;5P — OP;

where A = (a;;) is the N x N adjacency matrix of the contact network,

and [ is the per-contact transmission rate.

— I(t) = Ziilpi(t) is the mean number of infected nodes at time .
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If all the nodes have the same number k of neighbours (regular random
network) and p;(0) = pg > 0 Vi (the same probability of being infected
at time 0), then the solution of the previous system is p;(t) = p(t) Y4
with p(t) being the solution of

dp
L kBy(1—p)p—6
g Bo(1 —p)p —dp

endowed with the initial condition p(0) = po.

The mean number of infected nodes at time ¢ is then given by

N
I(t) = > pi(t) = Np(t) — i(t) = I(t)/N: fraction of infected nodes
i=1
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So, the faction i(t) is the solution of

%:5(1—1)2'—&

with 8 = kfy is the per-node transmission rate.

Multiplying by N (total number of nodes) we recover the standard SIS
model: i /

— =p4S— —4dI

dt 5SN

with S = N(1 —4).

Remark: If we think of k£ as a contact rate, then (3 is the transmission

probability during an S-I contact.
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3. The SAIS model

In the formulations of the SIS model with 5 = §(I), all the susceptible
individuals become aware of the risk because they have the same (3, even

if 5 is not constant. However this is never the case.
— Alerted individuals with different level of awareness.

In the original N-intertwined SAIS model, the transitions between states

are

Epidemic Model

Y;: number of infected neighbours of node

Behavioral Response Model

Sahneh et al. (2012)
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Equations for the probability p;(¢) for the node i of being infected at
time ¢t and the probability ¢;(t) of being aware at time ¢:

dp; N N
dtZ = Bo(1 —pi — @) 2 ai;p; + By Z a;jp; — Op;
Jj=1 Jj=1
dq; N N
1
s ko(l —p; — lh)j; ai;p; — Bod j; aijp; — 0agi

where 3§ is the transmission rate per A — I contact: 5§ < S,
Ko is the alerting rate per S — I contact, and ¢, is the awareness decay

rate, and 1 — p; — g; is the probability that node i is susceptible.

< Aware indiv are created from a direct interaction with infected indiv.

Remark: In Sahneh et al. (2012), there is no awareness decay (d, = 0).
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Juher, Kiss & J.S. (2015): The model on regular random ntws, d, = 0.

Lemma 3.1. Consider the initial value problem (IVP) given by system
(2) defined on regular random networks and endowed with the initial
conditions p;(0)=py =0 and q;0)=qy=0 for i=1,2,...,N, and
such that py+qo<1. The solution of this IVP is given by
(pi(t), q;(t)) = (p(t), q(t)) Vi with (p(t),q(t)) being the solution of the
system:

d
d_‘t’ = kfo(1—p—qp+kppg—p.,

dq

3
gt = kko(1=p—qp—kplapg—3ag,

endowed with the initial condition (p(0),q(0)) = (Py, o)-

p(t): fraction of infected nodes at time ¢, ()

q(t): fraction of aware/alerted nodes at time ¢, a(t)
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How good is the MF approximation of the node-based SAIS model?

0.5

0.3

With a uniform initial condition,

B=kBo, Ba=kB% k=kko

1. Evolution of the fraction of infectious nodes i(t) for a smaller epidemic
(5=4, 5.=05, =12, =2 and x=4) and a larger epidemic (5=4, 5,=0.5,
p=18, p, and x=4) on a regular random network with N=1000 nodes of
degree k=>5. Open circles (o) correspond to the solutions of the node-based model
(2), with o = p/k, i =pa/k, ko =x/k. Continuous lines are the solutions of the
mean-field model (4). For the larger epidemic the initial condition is uniform with
each node having a probability 0.9, 0.1 and 0 of being susceptible, infectious or
aware at time t=0, respectively. For the smaller epidemic, the neighbours of 20
randomly chosen nodes were infected with probability 1.0, resulting in a
10% infectivity at time t=0. As proven in Lemma 3.1, the output from the two
models coincide for uniformly random initial conditions. For initially clustered
infections, the mean-field model overestimates the initial epidemic growth
predicted by the node-based one, although both solutions tend to the same steady
state i* = 0.38618.

the agreement between the solutions to

both systems is pretty good on regular random networks (upper curve).

It is not so good if we depart from such an initial condition (clusters of

initially infected nodes (lower curve).
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The (reactive) SAIS model

Just, J.S. & Xin (2018): Reactive SAIS and SAUIS models

Alerted people can convince others to take preventive measures: (%) is

the rate at which a susceptible indiv becomes aware following contact
with aware individuals:

da N e Ny . .
pn = (i) si+ aq(i) sa+p(i) 61 — faai — 64(0) a,
%:(5s+ﬁaa—6)i, st+a+i=1 (1)

Here we assume that «; (i), oy (i), p(i), 6,(i) are nonnegative differentiable func-
tions in [0, 1], p(i) < 1, 6,(0) > 0, and B, B,, 6 are constants such that 0 < g, <
and § > 0. Moreover, for i > 0 we assume that o, (i) > 0 and «; (i) + p(i) > 0.
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Equilibria:

Let us define the following basic reproduction numbers for the disease

spread (Ro and RY) and awareness dissemination (R2):

p Ba
R():iv Rg:?7 075(0)'

0

DFE: P, = (0,0), P»= (1 - Rio)

Endemic equilibria: Py = (a*,i*) with i* = 1— & — (1 - %a) a* > 0.
P» contains only alerted indiv. It is biologically meaningful if R§ > 1.

The eigenvalues of the Jacobian matrix at P, are:

M (P2) = 6a(0) — aa(0), Aa(Py) = B—6— (B — ) (1 - ;) .
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Theorem 1 Assume «; (i), o, (i), p(i), 6; (i), B satisfy the conditions that were spelled
out below (1). Then the global behavior of the solutions of the system (1) depends as

follows on the remaining parameters:

(i) If Ro < 1 and R < 1, then Py is the only equilibrium point and is globally
asymptotically stable.

(ii) If Rp < 1 < RS, then Py and P, are the only equilibrium points. P, is globally
asymptotically stable on Q\{P1}. When Ry < 1, then Py is a saddle point.

(iii) If R§ < 1 < Ro, then no equilibrium P, # Py exists in Q. When R < 1, then
Py is a saddle point. Each trajectory that starts with i(0) > 0 will eventually
approach an endemic equilibrium of type P3.

(iv) If Ro > 1 and R > 1, then Py is an unstable point and system (1) has also the
equilibrium Py. If Mo(P2) < O, then P; is locally asymptotically stable.

(v) Ifinstead My (P3) > 0, then system (1) has also at least one equilibrium P3, with
P> being a saddle point. Each trajectory that starts with i (0) > 0 will eventually
approach an endemic equilibrium of type P3.

Remark: The condition A\3(P») > 0 can be written as

Ro+ (RS —1)(RI —1) > 1.
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There can be more than one endemic equilibrium P; even if Az(Ps)

< 0:
1 1
"
|
0.8 }i 0.8
1
! 1
i \
0.6 0.6 fj
\
~ \ - !
\ \
048\ 0.4\
RN
0.2 0.2 >
~o N
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a

Fig.2 Phase portrait of the reactive SAIS with constant rates showing the existence of two interior equilibria
(right) after a saddle-node bifurcation (leff) using «; as a tuning parameter. Parameters: p = 0, 8 = 6,
8=4,B4=2,60 =0.9,aq =2, and o; = 0.05 (right) and o; = 0.1733500838578 (left)

R k: 6 2 2 N
remark Ro+(R8—1)(Rg—1):Z+(——1><7—1):0.8<1A

GSDUAB seminar 20



But what about oscillatory solutions?

Lemma 3 Assume «; (i), oq (i), p(i), 8; (i), B satisfy the conditions that were spelled
out below (1). Then the system (1) has no closed orbits inside <.
Proof Let fi(a,i) and f>(a,i) denote the functions on the right-hand side of the
1 1
system. The vector field (Fi(a, i), F2(a,i)) = (— fi(a, i), — fa(a, i)) is C!in the
ai ai
interior of €2, and its divergence is given by

N
1+ =
a

Oli(i)(

a

i 9 il )3
%Fl(a,f)-l—EFz(a,i) = ) o ‘(l) p@)s B 3

for all (a, i) in the interior of Q2. So, the divergence does not change sign and does
not take the value 0. Therefore, Dulac’s criterion of nonexistence of periodic orbits
(Perko 2001) precludes the existence of a closed orbit lying entirely in 2. O
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4. The SAUIS model

Is it possible to have oscillatory solutions from the interplay between
disease spread and awareness without demographics or changes in the

contact pattern among individuals (Szabé-Solticzky et al. (2016))?
Not all the alerted individuals have the same degree of responsiveness.

The quality of the transmitted information has an impact on the creation

of aware indiv willing or unwilling to pass on the alert to other individuals

< |dea of degradation of the information introduced by Agliari et al.
(2006) and adopted by Funk et al. (2009) for an epidemic context:

"When information is passed from person to person, it loses its quality; in other words, first-hand information
about a disease case will lead to much more determined reaction than information that has passed through many

people before arriving at a given individual”.
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The model:

=St +agsa+pdi— Pgai—d,a,

dt

d

G = [oua]+ [@aa] + adi = i —di

e

é:(ﬁs+5aa+5uu—5)i, s+a+uti=L

with0< 8, < B, <Bandp+qg<l.

Equilibria:
DFE: P, = (0,0,0), P, = (af,ud,0) with af,ud > 0 iff R§ > 1,
Endemic equilibria: P3 = (a®, u*,*) with

(1B g (1B e
T=1-3 <1 B) <1 ﬂ) =0
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Transcritical bifurcations at Ry = 1, R} = 1, and A3(P2) = 0 (A3 is the

only eigenvalue of the Jacobian matrix at P, that can be positive).

At A3(P2) = 0, both forward and backward bifurcations can occur:

0.4
03
Fig. 3 Transcritical bifurcation 2, 02
diagrams of system (8) for
B=2pu=106=1 o
8q = 0.01, 8, =0.05, a; = 0.8, . e
oy =0.1,p =g =000 =0.1 055 065 075 085 095 105
(top) and ag = 1 (bottom). The 3
stable (unstable) equilibria are 04

depicted with a solid (dashed)

line. Bifurcation values: 03
BG = 0.844 and g = 0.62 (for o
the fold bifurcatich) (upper =
panel); B = 0.988 (lower o
panel)

GSDUAB seminar B,



Hopf bifurcation (at the endemic equilibrium):

Let P; be an endemic equilibrium, J(Ps) be the Jacobian matrix at P,
and p(A) = A3 + caA? + 1\ + ¢g its characteristic polynomial

(co = —det(J), ¢1 is the sum of the principal minors, c; = —trace(FP2)).
J(Ps) has precisely one pair of pure imaginary eigenvalues iff

cp — c1c2 = 0 and ¢; > 0 (Guckenheimer et al. (1997)).

The Hopf pairs (84, «;) are found by solving the three equilibrium
equations and ¢y — c1ca = 0 (with ¢; > 0) with a; as a tuning

parameter: 3, = f(a*(a;), u*(a;),* (), ;)

— Algebraic Hopf-bifurcation curve: H = {(B4, a;)}
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Example:

Fig. 4 Hopf-bifurcation curve
H of system (8) for § = 1,

8a = 0.01. 6, =0.05,. 8 =3,
Bu =050 =001,y =1,
and p = g = 0. For pairs

(Bg. @;) inside the region
bounded by this curve and the
aj-axis system (8) has an
unstable endemic equilibrium
and a stable periodic orbit
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Fig. 6 Evolution of the fraction of infectious (sofid line), aware (dashed line), and unwilling (dot-dashed
line) hosts according to system (8) for different values of &; along the vertical section in Fig. 4 corresponding
0 Bqg = 0.2:a; = 0.2 (top left), 0.24 (top right), 0.5 (bottom left), 0.94 (bottom right). Fixed parameters:
g =001, oy =1,8 =1, 84 =0.01, § =0.05, B =3, Bg =02, By =0.5, p=q = 0. Initial
condition: a(0) = #(0) = 0,i(0) = 0.1
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5. The SAUIS-¢ model

How robust are the predicted oscillations when we depart from the

underlying assumptions of the mean-field approximation?

Different network architectures (not only regular random networks)

< Integrate the N-intertwined epidemic model to include adjacency

matrices corresponding to different networks.
Gillespie algorithm for performing stochastic simulations of the model.

To avoid the stochastic epidemic extinction when the prevalence is very
low, we consider a very low rate € of imported cases from individuals who
have been infected abroad (Juher, Rojas & J.S. (2020)).
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The SAUIS-¢ model:

d
CTZ :aisi+aasa+p51'_ﬂaai_5aa _’
d
di

%:(ﬂs+5aa+ﬂuu—5)i+ (1 —1d)e|,

withs+a+u+i=1ande > 0.

Very low values of € will not alter the underlying deterministic dynamic of
the epidemic.
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FIG. 6. (a) Time evolution of a stochastic simulation of an epidemic on a random regular network of size N = 1000 and degree k = 100
showing the input of imported cases (infections from abroad) for ¢ = 10* (black dots on the time axis). (b) Fraction of infected nodes in the
same simulation until the beginning of the fourth flare-up where & = 0 (lockdown). Dashed line: Fraction of infected nodes without lockdown.
Parameters: § = 1.6, = 0.01,4, =0.05. 8 =3. 5, = 0.05, 8, =0.5. a; = 0.15. o, = 0.01. v, = 1. i(0) = 0.1, a(0) = u(0) = 0.2.
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0.2

0 02 04 06
Ba

FIG. 1. Hopf-bifurcation curves in the (B, a;) parameter space
for & = 0 (dashed linc), s = 10~ (dotted line) and & = 10~* (solid
line). Parameters: & = 1, 8, = 0.01, 8, =0.05, B =3, §, =05,
@, =0.01,v,=1.
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0 0.2 0.4 0.6 0.8

o

FIG. 2. Stability modulus of the Jacobian matrix at the endemic
equilibrium of Eq. (2) as a function of «;. Parameters: § = 1, §, =
0.01,8,=0.058=3,8,=0.1,,=050,=00L,v,= 1,6 =
1074
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Hopf diagram using the FGA? on regular random networks of size 10.000:

0 02 04 06
Ba

FIG. 9. Hopf diagram obtained according to the description in
Sec. IVD of the FGA with N = 10000 nodes and time 7" = 3000.
The gradient of colors evidences the amplitude of the averaged signal
of the fraction of infected nodes. The black line is the algebraic Hopf-
bifurcation curve for & = 107,

Linear noise approx: The standard deviation of random fluctuations about the mean fraction ~ L —o0.01

B

2Fast Gillespie Algorithm. The nodal degree is not a parameter of the algorithm.
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0.11 0.11
0.09 0.09
0.07 0.07
0.05 0.05
0.03 0.03

0 02 04 06

(b)

FIG. 10. Hopf diagram of SAUIS-¢ obtained according to the description in Sec. IVD with N = 1000 nodes and time 7" = 3000, in
two different network architectures of mean degree 50: (a) Poisson and (b) Exponential. Parameters: § = 1, §, = 0.01, §, = 0.05, g =3,
Bu=05,a,=001v,=1,6=10"%i0) = 0.1,a(0) = u(0) = 0.2, 50 experiments for each pair (8,, &;). The gradient of colors evidences
the amplitude of the signal corresponding to the fraction of infected nodes. The black line is the theoretical Hopf-bifurcation curve.

Linear noise approx: The standard deviation of random fluctuations about the mean fraction ~ —— = 0.0316

VN
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Juher, Rojas & J.S. (2022): SAUIS-¢ model with non-constant rates

The model:
d
—(Z =81+ agsa— Byai—|0,0m(i)a|— ca,
d
ditt = 5aam(i)a‘+‘auam(i)sa‘—ﬁuui—duu — eu,
di

7 = (Bs+Baat Buu—0)i+ (1—de,

withs+a+u+i=1¢=0.

With a high disease prevalence, the awareness decay rate d, and the

alerting rate a,, will be lower than when ¢ ~ 0.

— Both rates are modulated by the function o, (%).
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Figure 1: Shape of function 0., (i) with n = 0.4 for different values of m.

The sharpness of the reduction of the rates is controlled by m.
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Lemma: This system with ¢ = 0 has at least one endemic equilibrium if

_pd
Ogﬂa<ﬁu<5<ﬁandR3<1§"_R%°.
0

The proof is based, first, on the fact that any endemic equilibrium lies

inside the plane

0y Ba\, (B
1=1 3 (1 B)a (1 5)%

which reduces the problem to finding the common zeros of two functions
fi(a,u) and fa(a,u), and, second, on a version of the Poincaré-Miranda
theorem in a triangular domain which guarantees the existence of at least

one common zero.

For £ small enough, the system with € > 0 also has an endemic equilib.

From now on we will restrict ourselves to parameter values that satisfy

these two conditions. In particular, they imply R < 1 < Ry.
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The tuning parameter is m which is related to the abrupt change in the

awareness decay.

e ey 04 02 T T T T T 1
a 0 o8 u 1] 01 0z 03 04 05 06 T 0B
u
Figure 2: Two solutions of system (I) for m = 3.5 tending to the limit eycle (in green) whose dynamies is close
to the plane (2) (in light blue).

Bl Ba| Bu| o Qo | Va |8] bu | by | = | p
0.5 0.001 [ 0.015 | 3 [ 1]0.0L]0.03]107° |04

[Sv]
=

Table 1: Standing values of some parameters
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Numerical computation of the limit cycles and their stability using the

Poincaré map.

Amplitude of the limit cycle
(proportion of infected nodes)

my Many | L
n0s R N . .
36 3.65 a7 375 38 16 18.5 17

Bifurcation parameter (m)

Amplitude = difference between the largest and the smallest fractions of

infected individuals along the periodic orbit.
GSDUAB seminar 38



or or ar
o8 o8 a8
os o8 as
ER T ERT 204
o3 o3 a3
02 [ 02
a1 a1 o1
°
A am e am  ana ane  am & A am aee am o A e 6 A am am as ane 0ee am o A
o8
or o7 a7
o8 o8 o8
s o8 a5
=04 ExT o 04
03 o3 a3
02 [ o2
[ o1 o
e &m0 am OM a5 ae o Yo Gm em  em oW aE a0 ¢ ] [T
o a

Figure 4: Projections on the (a,u)-plane of some solutions of system (@) for m = 16 (top left), m = 16.05 (top
middle), m = 16.0575 (top right), m = 16.05755 (bottom left), m = 16.06 (bottom middle) and m = 17 (bottom
right). The orbit in green corresponds to the hyperbolic attractive limit cycle, the orbit in red to the hyperbolic
repulsive limit cycle and the orbit in blue to the non-hyperbolic semistable limit cycle. Blue circles mark the
initial conditions.
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Maximum amplitude of infecteds

Stochastic detection of bistability:

Bifurcation parameter (m)

n = 1000 stochastic realizations of an epidemic with N = 10°.

GSDUAB seminar
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Bifurcation parameter (m)
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https://sites.google.com /view /epimod-girona2023/
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https://sites.google.com/view/epimod-girona2023/
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Thank you for your attention!
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