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THE PLANAR EQUILATERAL RESTRICTED FOUR-BODY

PROBLEM

The planar equilateral restricted four-body problem (ERFBP)
describes the motion of an infinitesimal mass m, moving under
the Newtonian gravitational attraction of three bodies
(primaries) with positive masses m1, ms and mg lying at every
moment at the vertices of an equilateral triangle, while each one
describes a circular orbit around their common center of mass.




The problem has a rich literature that goes back at least to the
work of Pedersen (1944, 1952), and has been treated from
different points of view.

[1 Zepeda Ramirez, J. A.; Alvarez—Ramirez, M.: Equilibrium
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In this talk we focus on summarizing some results obtained
previously, as well as others obtained by us, on the existence
and linear stability of equilibrium points, either as

or central configurations of the (3 4+ 1)-body problem,
where the primaries are forming an equilateral triangle
configuration.



SPECIAL CASES

e m; = m; = 0, we obtain the rotating Kepler’s problem with
my = 1, k # 1, j, at the origin of coordinates.

o If m; = 0, we obtain the circular R3BP, with the other two
masses m;, my 7# 0.

@ m1 = mo = mg, we obtain the symmetric case with three
masses equal.



SYNODIC FRAME (ALSO REFERRED AS CO-ROTATING

FRAME )

We choose a synodic coordinate frame which places the triangle
in the zy plane and fixes the center of mass at the origin. We
orient the triangle so that the primary m; is on the positive
T-axis.

The masses of the primaries are normalized so that

my + mso +mg = 1. Define K = ma(mg — ms) + mq(ma + 2ms3).
The locations of the three primaries are given as
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THE EQUATIONS OF MOTION OF m

j+ 2z =8,
where
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and 7, = /(z — ;)2 + (y — v:)2, for i = 1,2, 3.

The motion of the infinitesimal mass m is then studies in a
similar manner, as in the restricted three-body problem.



COMPUTATION OF THE EQUILIBRIUM POINTS

To find the equilibrium points, as usual, we have to put the
right motion equation to zero and solving for the variable value
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The search for equilibrium points and the examination of their
linear stability have been carried out by means of analytical and
numerical methods.



The condition m1 + mo + m3 = 1 implies that ERFBP depends
only on two mass parameters. In particular, we take

m3 =1 —m1 — my, so the two free parameters will be m; and
mgy. The parameter space of the ERFBP is then reduced to the
2-simplex, called the triangle of masses,

Y = {(m1,ma2,m3) GRi | mi+ma+mg=1,0<mp <1, k=1,2,3}

The sides correspond to mass values of the (2 + 2)-body
problem (two large and two massless), while the vertices are the
masses of the (1 + 3)-body problem (rotating Kepler’s problem)

ms

my+mg+mg =1

ma




Pedersen (1944) made a combination of numerical and
analytical methods to compute the number of central
configurations for the infinitesimal mass of the (1 + 3)-body
problem, when the three large masses form a Lagrangian
equilateral triangle.

He found that, there can be 8, 9, or 10 equilibrium positions,
depending on the values of the primary masses, and also proved
that the set of degenerate equilibrium points is a simple closed
curve contained in the interior of the simplex . We denote this
curve by B. He proved that, on the bifurcation curve 9B, there
are 9 equilibrium points.

Pedersen’s numerical calculations were later confirmed in a
paper due to Simé (1978), where a numerical study was done
for the number of relative equilibrium solutions in the
four-body problem for arbitrary masses.



Arenstorf (1982) outlines some analytical proofs of the main results obtained by
Pedersen. He stressed that a careful mathematical analysis and rigorous
calculations required to prove these results are contained in the Ph.D. thesis of his
student Gannaway (1981). As it turns out, in Gannaway’s dissertation, there are
only a few analytical evidences for particular assertions, namely, bifurcations and
counting are verified once again only by a thorough numerical analysis.

Later on, Barros and Leandro (2011, 2014) were able to give a mathematically
rigorous computer-assisted proof proving that, B is a simple, closed, continuous
curve, which lies inside the triangle ¥. They also confirmed that there are either
8, 9, or 10 equilibrium solutions (depending on the primary masses), and proved
that 6 of them are outside of the Lagrange equilateral triangle formed by the
primary bodies.

In 2022, Figueras et al. gave a new proof to the one performed by Barros and
Leandro, about number of relative equilibria. Their proof is also based in
computer-assisted methods.



Baltagiannis and Papadakis (2011) study numerically the ERFBP. They provided
an extended list of possible combinations of primary bodies masses and their
respective number of points of equilibrium. In the same vein, it is a recent work
by Zotos (2020) where previously known results are retrieved.
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Figure: Equilibrium points in the z-y plane located at the intersection of the
curves Q; = 0 (red) and Qy = 0 (blue) for: (a) m; = 0.02 and mg = 0.015 with 8
equilibria and (b) m; = 0.4 and m2 = 0.35 with 10 equilibria. The green dots
denote the position of the equilibrium points and the positions of the primaries are
marked by black dots.
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LINEAR STABILITY OF THE EQUILIBRIUM POINTS

Once the coordinates of the equilibrium conditions (zg,yo) have been determined,
its linear stability can also be studied. We start by moving the equilibria to the
origin of a coordinate system. The characteristic equation can be written as:

A f (4= A1n — A22)AZ + Aq1Agg — A2, =0, (1)
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By virtue of Lyapunov’s theorem on stability of equilibria for autonomous
Hamiltonian systems with two degrees of freedom, we have that the equilibria are
linearly stable if (1) has four pure imaginary roots.



The stability is secured by the three following conditions:

(4 — A1 — Ag2)? — 4(A11Agg — A3y) > 0,
4—A11 —A22 >O,
A11A22 — A%Q >0

which must be fulfilled simultaneously, whose frequencies wy
and we are given by

1
w2 = %\/_4 + A1 + Agx £+ \/(4 — A1 — A22)? — 4(A11A22 — A2,).



In the circular restricted three-body problem (in short,
CR3BP), there are two solutions in which the bodies move
along the equilateral triangular solutions Ly and Ls (now known
as the Lagrange solutions), and there are also three collinear
solutions, attributed to Euler, denoted by L;, Lo and Ls.




ROUTH’S CRITERION

The Routh’s criterion for linear stability states that

mimsz + mams + mgmy 1

m1 + mao + ms 27

In the CR3BP with m; =1 —pu, mo = p, O<u§%.
At the Lagrange equilateral triangular equilibrium points L4
and Ls, the Routh’s critical mass ratio is
o [y = %(1 —1/69/9) ~ 0.038520896504551
L4 and Ls points are stable for p < ;.
This critical value p; lies on the boundary of stability of Ly and

corresponds to 1:1 resonance between frequencies of the system
linearized in a neighborhood of the point.



THE PROJECTION OF X ON THE PLANE mjims

Considering that mz =1 —m; — ms
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Figure: The three small “triangular" shaded regions I, IT and III are stability
domains of the Lagrange triangle configuration, and white region below the line
m1 + meo = 1 is instability domain. The mass parameter of the third primary is
m3 = 1 —mj1 — ma. The red lines correspond to the Routh’s critical curve.



It is known from numerical studies by, among others, Pedersen,
Arenstorf, Simé and Baltagiannis-Papadakis, that the region on
the plane (my, mg) where the triangular configuration of the
three primaries is stable, there exist eight equilibrium points.

It is noteworthy that Barros and Leandro used analytical and
computational techniques to prove that, for all triples

(m1, mg, m3) € ¥ which are close enough to 0%, the number of
central configurations is eight.

This means that we will have eight equilibrium points on
regions I, II and III.



Zotos (2020)
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Figure: Regions on the (my,ms) plane, corresponding to eight (green)
and ten (red) points of equilibrium. The black dashed lines are
indicating the set of mass values on which the sign of the relative
positions coordinates of the primaries m; and ms is changing. The
border of the red region corresponds to the bifurcation curve 9.



L3, Ly, Lg THE ONLY STABLE EQUILIBRIUM POINTS
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(a) Resonance curves in region I.
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(b) The enlarged graph.

Figure: Plots of all resonance curves in region I for equilibrium points

L3, L5 and L6~
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A(0.002716,0.002716) is precisely the point with resonance 1:1
for Ls where Burgos and Delgado (2013) (L2 in their notation)
established the existence of a “blue sky catastrophe", and the
other is B(0.01883,0.01883) resonance values for Ls and Lg,
whose stability has not hitherto been studied.



Curves and points obtained by Simé (1978)

two primary bodies with equal masses

Figure: The region CYV X is the linear stability area of the primaries
in the mass space, where Ry = CST, Rg = CUT and R; = CUVY
are stability regions of equilibrium points Ls, L3 and Lg.



REGIONS OF STABILITY

“The stable relative equilibria of m are confined to a small belt around the greater
mass at approximately the same distance from the two smaller finite bodies ma,
m3 and in the same semiplane".

Belt not to scale
Lg — amarillo L3 — verde Ls — naranja
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