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Variable Time Step Dynamics With Choice

@ We study systems that switch their modes of operation (regimes)
at discrete moments of time.

@ The intervals between switching — dwell times — may vary.

@ The number of modes may be finite or infinite.

@ One-step evolution map: SjT tX — SjT(x),
o 7 —dwell time
e j—regime used during this time interval

© Dynamics: X1 = S;"(Xn)
@ We study all possible regime switchings and dwell time sequences
(deterministic picture)
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Example: Switched System

X = fy(n)(x) on the interval [ty, th, 1),

o < ti < ... are the switching times,

N different regimes labeled by elements of set 7 = {1,2,..., N}

Each f,,(n is taken from a finite set of functions {fy, ..., fv_1},

w:Ng — {1,2,..., N} is a regime switching function,

Time intervals between switching (dwell times) h(n) = t,.1 — ty

Xp — initial state; after n steps the state will be x,

Xpi1 = Sy (Xn)
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Example: Difference Equations

@ discrete switched system:
Xny1 = Xn + h(n) fw(n)(Xn) ,
is already in the form
Xnt1 = SCV((?)(X”)

We develop a language to describe the dynamics of systems of
this sort.

We call it Variable Time Step Dynamics with Choice.
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Encoding regime switching and dwell time sequences

Suppose there are 2 regimes (labeled 0 and 1) and 2 possible dwell

times, a and b.

The strategy of regime switching is given by an infinite sequence
(word, string)

w = 10110100100001110... w(0)
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The strategy of dwell times switching is given by an infinite sequence
h = aabbabaabb... h(0) =a,h(1) =a,h(2)=b,...
The corresponding trajectory of x is

X = S7(x) = SF(S7(x)) — SASH(SHX))) = ...
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Mathematical Setting

@ X —the state space
@ J —the set encoding different regimes

@ 7 —the set of allowed dwell times
Z C (0, +00), could be an interval, or a finite set,...

@ ¥ 7 —the space of one-sided infinite strings with symbols in 7
Y 7 — the space of one-sided infinite strings with symbols in Z

@ 0 : Y7 — X7 —the shift operator: If w = w(0)w(1)w(2)--- € £ 7,
then o(w) = w(1)w(2)...

@ o : Y7 — X7 —the shift operator: If h = h(0)h(1)h(2)--- € X7,
then o(h) = h(1)h(2) ...

o themaps ST : X = X, jeJ, 7€
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Mathematical Setting

The right way to describe:

Variable time step dynamics with choice is a discrete time dynamics on
X = X x 7 x X7 generated by iterations of the map

&: (x,wh) = (SHE)(x), o(w), o(h))
after n steps:

&"(x, w, h) = (s”[”l (x), o"(w), a”(h)>

w(n]

hlinl [\ _ ah(n—1) h(1) _ ah(0)
Suin(¥) = Swin_1) ©* © Sy © S0y (X)
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Reachable states attime T

Given an interval [0, T], consider different partitions of [0, T],
0:t0<t1<---<tm,1<tm:7-, h(i):tj+‘|*t,‘

and different orders of switching modes, w(0) w(1)...w(m — 1), to
obtain all possible

Xy = ghiml (x0) = ghtm=1) S,V?/((%))(XO)’ Zh(j) _T
J

w[m] w(m=1) = "

X0 e L5
° i) 9
T1 s x3
C e
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to =0t to ts ty ts =T
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Mathematical Setting

In this talk:
@ X =RY,
@ 7 is compact metric space,
@ 7 =(0,¢,

@ Each SjT : X — X, is continuous, bounded for all j € 7, 7 € (0, €]
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Continuous Limit Dynamics

Continuous Limit in Dynamics with Choice
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Continuous Limit in Dynamics with Choice

Make the partition finer and finer...

In the limit: all the points reachable at time T are all the limits of the

form limy_ o Sc'vkk[[',;’;]](xo)

@ Define the reachable sets: For every x € X, set
Fr(x)=xif T=0,and,if T >0,

Fr(x) {y e X } y = IIm Sh"[n"]( x) for some sequence

wic[ng]

(wg, hg) C ZJ X Z(O7€k]’ with e, \(+0

ng—1
Nk  +oo, and g he(i) =T for all k > 0}
i=0
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Assumptions

@ On any bounded set A C X, the maps SIT are uniformly continuous
with respect to j and 7.

@ For any bounded B,

d(B, Sy ) 0+ 0 S (B))

is small if the total time >"7,' h(i) is small, independetely of the
choice of w and h.

Sanja Gonzalez Zivanovié Lev Kapitanski*

(8 Continuous Limit in Dynamics with Choice July 26, 2012 13/32



Properties

@ F7(x)is a nonempty, compact set.
@ F7(x) is continuous with respectto T,

@ Fr(B) is compact.

Sanja Gonzalez Zivanovié Lev Kapitanski*

(

B Continuous Limit in Dynamics with Choice

July 26, 2012

14 /32



Properties

For any A, B ¢ X bounded,
e IfAcC B, Fr(A) C Fr(B)

e Fr(AUB) = Fr(A)U Fr(B)

® Ure FT(X) € Uyes Fr(x) € Fr(B) = Fr(B)

e Forany Ty, T, > 0 we have Fr, (Fr,(B)) C Fr,4+1,(B).
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Additional Assumption

For every T > 0, there exists a modulus of continuity function w” such
that for any sequence (w, h) C X7 x X, if Z,f’:‘(; h(i) = T, then

sup _ d(Syin (). Sy (1) < (0)
X,y:d(x,y)<é

For a fixed 4, the function w(4) is nondecreasing in T.
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Properties

@ F has the semi-group property, i.e.,
‘7:7-2(]:7-1 (X)) = fT1+Tz(X)'
© Uyes FT(X) = Uxes Fr(x) = Fr(B) = Fr(B)

@ For every T > 0, Fr is continuous in the sense that
if x, — x, then
Au(Fr(Xn), Fr(x)) — 0

@ The triple (R?, F,R,) is a multivalued semi-dynamical system.

Sanja Gonzalez Zivanovié Lev Kapitanski*

(8 Continuous Limit in Dynamics with Choice July 26, 2012 17/32



Special Case

@ x(t) =fi(x(t)), x(0)=x, i=1,....N

@ fi,...,fy : R" — R™ are Lipschitz continuous maps

@ Denote by S7(xp) the solution of x(t) = fi(x(t)), x(0) = xo at
time 7. We have

ST (%) = %o + /0 " f(x(s)) ds.
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Special Case

@ It follows from general theory of ODEs that the maps S are
continuous and bounded.

@ The maps ST satisfy all the Assumptions previously stated.

@ The set Fr(xp) is non-empty and has all the properties stated
before.
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Special Case

@ Forany (w,h) € L7 x ¥, iterates are defined as
W[n](XO) =7 h[n] - XO+Z/ S, ti+1 *ti = h(l)

t
A(t) = xi + / o ((S)ds, <<ty
li
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Special Case

v curves
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Limiting curve

o e(t)
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Special Case

@ Every sequence (yx) € C([0, T]) has a convergent subsequence.

@ CLyo,11(X0) = {w € C([0, T]) | ¢ = limy_o0 vk}
— variable time step continuous limit dynamics

@ By construction, F¢(xo) = U, »(1)

Sanja Gonzalez Zivanovié Lev Kapitanski*

(8 Continuous Limit in Dynamics with Choice July 26, 2012 23/32



Differential Inclusions (Dls)

@ Relaxed Dl:

x(t) € co{ fi(x(1)), R(x(1)), ... (x(1) }, x(0) = Xo

@ x € F(t,x)

@ Solution set of Dl is

DI (%) = {x(t) | x(f)isa.c., x(f) € To{fi (x(1)), .. ., fu(x()),
for a.e. t € [0, T], x(0) = xo}
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Main Theorem

Main Theorem

1) DI, 1(%0) = CLip, 11(X0),

2) In particular, reachable set of the differential inclusion
attime tis f[(Xo), ie., DIt(Xo) = ]:l‘(XO)-
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Sketch of the Proof

Proof: CLo, 11(X0) C DZo,71(X0)
@ is standard in the theory of Dls.
Proof: CL 11(X0) D DIjo,77(X0)

a) Every solution of DI, x(-) € DZo, 11(Xo), is a solution of the
so-called control system

N
x(t) = ) K(x(1),  x(0) = xo
i=1

where «;(-) are some measurable functions with Ef; ai(t) =1
fora.e. t € [0, T].
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Sketch of The Proof

Proof: CL o, 71(X0) 2 DZ[o,71(X0)

b) First we show that every solution of the control system can be
approximated by solutions of the system

x(t)—Zb, fi(x(t)), x(0) = xo

where each b;(-) is a step function, and Ef\; bi(t) =1.

Denote the solution of this system by St v b,-f,-(XO)'
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Sketch of The Proof - Splitting Method

Proof: C‘C[OT](XO) D) IDZ[O?T](XO)

c) The key step:

ST _ fim (S o gt )"
1 0q00) = g (SF oS00 87H)
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Special Case

Recall the VTSDWC:

fit1

;7/[[7;']( ) h[n] - XO + 2/ W(I S, ti+1 - t,' — h(l)

t
W) =X+ [ fwiy(v(8))ds,  ti <t < iy
]
In our case, for each M we have periodic sequences w (the same for
all M) and hy,
w=123.--N123.--N123--- and
hy(0) = by T/M, hy(1) = boT/M, etc. For example,

- by by~ by_q L b L
S‘l:'/,\[/l’{//YFJ;]z](XO) - SSZM 08 Mo 8y'Mo8 " Mo...08"M(x)
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Special Case

We prove that yy(t) — St

ad Z,-“;b,-f,-(XO) for every t € [0, T].
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Motivation: Splitting Method

@ The classical Lie product formula
M
et(A+B) — lim (eﬁA eﬁB)
M—oco
where A and B are square matrices.
@ This formula shows how to approximate the evolution function of

the equation
x=(A+ B)x

by the evolution functions of the equations x = Ax and x = Bx.
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Conclusion

@ We give a general framework to study systems that switch
regimes at discrete moments of time.

@ We study the aggregate dynamics for all possible regime
switchings and time switchings, rather then approximating,
optimizing, averaging.

@ We explain what a continuous limit in VTSDWC is (when the dwell
times go to zero).

@ In the special case of a switched system, the continuous limit in
VTSDWOC coincides with the solutions of the corresponding
differential inclusion.
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