Continuous Limit in Dynamics with Choice

Sanja Gonzalez Živanović Lev Kapitanski*

Department of Mathematics and Computer Science, Barry University, Miami Shores, Fl *Department of Mathematics, University of Miami, Coral Gables, FI

ICDEA, Barselona, Spain

July 26, 2012

Variable Time Step Dynamics With Choice

Continuous Limit Dynamics

Special Case

Variable Time Step Dynamics With Choice

- We study systems that switch their modes of operation (regimes) at discrete moments of time.
- The intervals between switching dwell times may vary.
- The number of modes may be finite or infinite.
- One-step evolution map: $S_i^{\tau}: x \to S_i^{\tau}(x)$,
 - τ dwell time
 - *j* regime used during this time interval
- Dynamics: $x_{n+1} = S_{i_n}^{\tau_n}(x_n)$
- We study all possible regime switchings and dwell time sequences (deterministic picture)

Example: Switched System

$$\dot{x} = f_{w(n)}(x)$$
 on the interval $[t_n, t_{n+1})$,

- $t_0 < t_1 < \dots$ are the switching times,
- *N* different regimes labeled by elements of set $\mathcal{J} = \{1, 2, ..., N\}$
- Each $f_{w(n)}$ is taken from a finite set of functions $\{f_0, \ldots, f_{N-1}\}$,
- $w : \mathbb{N}_0 \to \{1, 2, \dots, N\}$ is a regime switching function,
- Time intervals between switching (dwell times) $h(n) = t_{n+1} t_n$
- x_0 initial state; after n steps the state will be x_n

$$x_{n+1} = S_{w(n)}^{h(n)}(x_n)$$

Example: Difference Equations

discrete switched system:

$$x_{n+1} = x_n + h(n) f_{w(n)}(x_n),$$

is already in the form

$$x_{n+1} = S_{w(n)}^{h(n)}(x_n)$$

We develop a language to describe the dynamics of systems of this sort.

We call it Variable Time Step Dynamics with Choice.

Encoding regime switching and dwell time sequences

Suppose there are 2 regimes (labeled 0 and 1) and 2 possible dwell times, a and b.

The strategy of regime switching is given by an infinite sequence (word, string)

$$w = 10110100100001110...$$
 $w(0) = 1, w(1) = 0, w(2) = 1,...$

The strategy of dwell times switching is given by an infinite sequence

$$h = aabbabaabb... \quad h(0) = a, h(1) = a, h(2) = b, ...$$

The corresponding trajectory of x is

$$(x \to S_1^a(x) \to S_0^a(S_1^a(x)) \to S_1^b(S_0^a(S_1^a(x))) \to \dots$$

Mathematical Setting

- X the state space
- J the set encoding different regimes
- I the set of allowed dwell times $\mathcal{I} \subset (0, +\infty)$, could be an interval, or a finite set,...
- $\Sigma_{\mathcal{J}}$ the space of one-sided infinite strings with symbols in \mathcal{J} $\Sigma_{\mathcal{T}}$ – the space of one-sided infinite strings with symbols in \mathcal{I}
- $\sigma: \Sigma_{\mathcal{J}} \to \Sigma_{\mathcal{J}}$ the shift operator: If $w = w(0)w(1)w(2)\cdots \in \Sigma_{\mathcal{J}}$, then $\sigma(w) = w(1)w(2)...$
- $\sigma: \Sigma_{\mathcal{I}} \to \Sigma_{\mathcal{I}}$ the shift operator: If $h = h(0)h(1)h(2)\cdots \in \Sigma_{\mathcal{I}}$, then $\sigma(h) = h(1)h(2)...$
- the maps $S_i^{\tau}: X \to X, \ \ j \in \mathcal{J}, \ \tau \in \mathcal{I}$

Mathematical Setting

The right way to describe:

Variable time step dynamics with choice is a discrete time dynamics on $\mathfrak{X} = X \times \Sigma_{\mathcal{I}} \times \Sigma_{\mathcal{I}}$ generated by iterations of the map

$$\mathfrak{S}: (x, w, h) \mapsto \left(S_{w(0)}^{h(0)}(x), \, \sigma(w), \, \sigma(h)\right)$$

after *n* steps:

$$\mathfrak{S}^{n}(x, w, h) = \left(S_{w[n]}^{h[n]}(x), \, \sigma^{n}(w), \, \sigma^{n}(h)\right)$$

$$S_{w[n]}^{h[n]}(x) = S_{w(n-1)}^{h(n-1)} \circ \cdots \circ S_{w(1)}^{h(1)} \circ S_{w(0)}^{h(0)}(x)$$

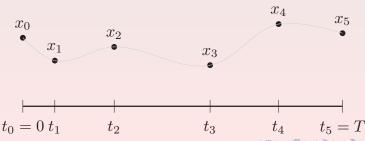
Reachable states at time T

Given an interval [0, T], consider different partitions of [0, T],

$$0 = t_0 < t_1 < \cdots < t_{m-1} < t_m = T, \qquad h(i) = t_{i+1} - t_i$$

and different orders of switching modes, $w(0) w(1) \dots w(m-1)$, to obtain all possible

$$X_m = S_{w[m]}^{h[m]}(X_0) = S_{w(m-1)}^{h(m-1)} \circ \cdots \circ S_{w(0)}^{h(0)}(X_0), \quad \sum_j h(j) = T$$

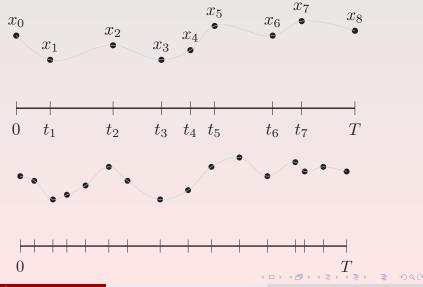


Mathematical Setting

In this talk:

- \bullet $X = \mathbb{R}^d$.
- \bullet \mathcal{J} is compact metric space,
- \bullet $\mathcal{I} = (0, \epsilon],$
- Each $S_i^{\tau}: X \to X$, is continuous, bounded for all $j \in \mathcal{J}, \tau \in (0, \epsilon]$

Continuous Limit in Dynamics with Choice



Continuous Limit in Dynamics with Choice

Make the partition finer and finer...

In the limit: all the points reachable at time T are all the limits of the form $\lim_{k\to\infty} S_{w_k[n_k]}^{n_k[n_k]}(x_0)$

• Define the reachable sets: For every $x \in X$, set $\mathcal{F}_T(x) = x$ if T = 0, and, if T > 0,

$$\mathcal{F}_{T}(x) = \left\{ y \in X \mid y = \lim_{k \to \infty} S_{w_{k}[n_{k}]}^{h_{k}[n_{k}]}(x) \text{ for some sequence} \right.$$

$$\left(w_{k}, h_{k} \right) \subset \Sigma_{\mathcal{J}} \times \Sigma_{(0, \epsilon_{k}]}, \text{ with } \left. \begin{array}{c} \epsilon_{k} \searrow +0 \\ \\ n_{k} \nearrow +\infty, \text{ and } \sum_{i=0}^{n_{k}-1} h_{k}(i) = T \text{ for all } k \geq 0 \right\}$$

Assumptions

- On any bounded set $A \subset X$, the maps S_i^{τ} are uniformly continuous with respect to i and τ .
- For any bounded B,

$$d_H(B, S_{w(m-1)}^{h(m-1)} \circ \cdots \circ S_{w(0)}^{h(0)}(B))$$

is small if the total time $\sum_{i=0}^{m-1} h(i)$ is small, independetely of the choice of w and h.

Properties

- $\mathcal{F}_T(x)$ is a nonempty, compact set.
- $\mathcal{F}_T(x)$ is continuous with respect to T,
- $\mathcal{F}_T(B)$ is compact.

Properties

For any $A, B \subset X$ bounded,

- If $A \subset B$, $\mathcal{F}_T(A) \subset \mathcal{F}_T(B)$
- $\mathcal{F}_{\mathcal{T}}(A \cup B) = \mathcal{F}_{\mathcal{T}}(A) \cup \mathcal{F}_{\mathcal{T}}(B)$
- $\overline{\bigcup}_{x \in B} \mathcal{F}_T(x) \subset \overline{\bigcup}_{x \in \bar{B}} \mathcal{F}_T(x) \subset \mathcal{F}_T(B) = \mathcal{F}_T(\bar{B})$
- For any T_1 , $T_2 > 0$ we have $\mathcal{F}_{T_1}\left(\mathcal{F}_{T_2}(B)\right) \subset \mathcal{F}_{T_1+T_2}(B)$.

Additional Assumption

For every T > 0, there exists a modulus of continuity function ω^T such that for any sequence $(w, h) \subset \Sigma_{\mathcal{J}} \times \Sigma_{(0,\epsilon]}$, if $\sum_{i=0}^{n-1} h(i) = T$, then

$$\sup_{x,y:d(x,y)\leq \delta} d(S_{w[n]}^{h[n]}(x), S_{w[n]}^{h[n]}(y)) \leq \omega^{T}(\delta)$$

For a fixed δ , the function $\omega^T(\delta)$ is nondecreasing in T.

Properties

 \bullet \mathcal{F} has the semi-group property, i.e.,

$$\mathcal{F}_{T_2}(\mathcal{F}_{T_1}(x)) = \mathcal{F}_{T_1+T_2}(x).$$

- $\bigcup_{x \in B} \overline{\mathcal{F}_T(x)} = \bigcup_{x \in \overline{B}} \mathcal{F}_T(x) = \mathcal{F}_T(B) = \mathcal{F}_T(\overline{B})$
- For every T > 0, \mathcal{F}_T is continuous in the sense that if $x_n \to x$, then

$$d_H(\mathcal{F}_T(x_n),\mathcal{F}_T(x))\to 0$$

• The triple $(\mathbb{R}^d, \mathcal{F}, \mathbb{R}_+)$ is a multivalued semi-dynamical system.

- $\dot{x}(t) = f_i(x(t)), \quad x(0) = x_0, \ i = 1, ..., N$
- $f_1, \ldots, f_N : \mathbb{R}^n \to \mathbb{R}^n$ are Lipschitz continuous maps
- Denote by $S_i^{\tau}(x_0)$ the solution of $\dot{x}(t) = f_i(x(t)), \quad x(0) = x_0$ at time τ . We have

$$S_i^{\tau}(x_0) = x_0 + \int_0^{\tau} f_i(x(s)) ds.$$

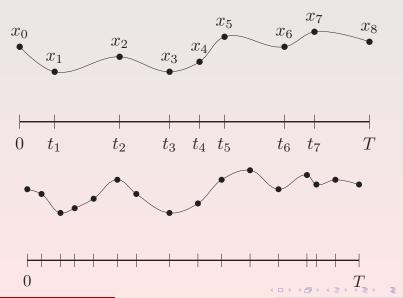
- It follows from general theory of ODEs that the maps S_i^T are continuous and bounded.
- The maps S_i^{τ} satisfy all the Assumptions previously stated.
- The set $\mathcal{F}_T(x_0)$ is non-empty and has all the properties stated before.

• For any $(w, h) \in \Sigma_{\mathcal{J}} \times \Sigma_{(0, \epsilon]}$, iterates are defined as

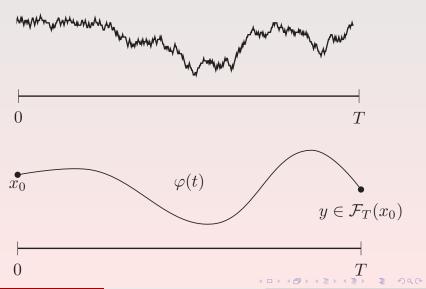
$$S_{w[n]}^{h[n]}(x_0) = \gamma(h[n]) = x_0 + \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} f_{w(i)}(\gamma(s)) ds, \qquad t_{i+1} - t_i = h(i)$$

$$\gamma(t) = x_i + \int_{t_i}^t f_{w(i)}(\gamma(s)) ds, \qquad t_i \leq t \leq t_{i+1}$$

γ curves



Limiting curve



- Every sequence $(\gamma_k) \subset C([0, T])$ has a convergent subsequence.
- $\mathcal{CL}_{[0,T]}(x_0) = \{ \varphi \in C([0,T]) \mid \varphi = \lim_{k \to \infty} \gamma_k \}$ - variable time step continuous limit dynamics
- By construction, $\mathcal{F}_t(x_0) = \bigcup_{\varphi(\cdot)} \varphi(t)$

Differential Inclusions (DIs)

Relaxed DI:

$$\dot{x}(t) \in \overline{co} \{ f_1(x(t)), f_2(x(t)), \dots, f_N(x(t)) \}, \quad x(0) = x_0$$

- \bullet $\dot{x} \in F(t,x)$
- Solution set of DI is

$$\mathcal{DI}_{[0,T]}(x_0) = \left\{ x(t) \mid x(t) \text{ is a.c., } \dot{x}(t) \in \overline{co} \{ f_1(x(t)), \dots, f_N(x(t)), \\ \text{for a.e. } t \in [0,T], \ x(0) = x_0 \right\}$$

Main Theorem

Main Theorem

- 1) $\mathcal{DI}_{[0,T]}(x_0) = \mathcal{CL}_{[0,T]}(x_0),$
- 2) In particular, reachable set of the differential inclusion at time t is $\mathcal{F}_t(x_0)$, i.e., $\mathcal{DI}_t(x_0) = \mathcal{F}_t(x_0)$.

Sketch of the Proof

Proof: $\mathcal{CL}_{[0,T]}(x_0) \subset \mathcal{DI}_{[0,T]}(x_0)$

is standard in the theory of DIs.

Proof: $\mathcal{CL}_{[0,T]}(x_0) \supset \mathcal{DI}_{[0,T]}(x_0)$

a) Every solution of DI, $x(\cdot) \in \mathcal{DI}_{[0,T]}(x_0)$, is a solution of the so-called control system

$$\dot{x}(t) = \sum_{i=1}^{N} \alpha_i(t) f_i(x(t)), \quad x(0) = x_0$$

where $\alpha_i(\cdot)$ are some measurable functions with $\sum_{i=1}^{N} \alpha_i(t) = 1$ for a.e. $t \in [0, T]$.

Sketch of The Proof

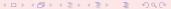
Proof: $\mathcal{CL}_{[0,T]}(x_0) \supset \mathcal{DI}_{[0,T]}(x_0)$

b) First we show that every solution of the control system can be approximated by solutions of the system

$$\dot{x}(t) = \sum_{i=1}^{N} b_i(t) f_i(x(t)), \quad x(0) = x_0$$

where each $b_i(\cdot)$ is a step function, and $\sum_{i=1}^{N} b_i(t) = 1$.

Denote the solution of this system by $S_{\sum_{i=1}^{N} b_i f_i}^t(x_0)$.



Sketch of The Proof - Splitting Method

Proof: $\mathcal{CL}_{[0,T]}(x_0) \supset \mathcal{DI}_{[0,T]}(x_0)$

c) The key step:

$$S_{\sum_{i=1}^N b_i f_i}^T(x_0) = \lim_{M \to \infty} \left(S_N^{b_N \frac{T}{M}} \circ S_{N-1}^{b_{N-1} \frac{T}{M}} \circ \cdots \circ S_1^{b_1 \frac{T}{M}} \right)^M(x_0)$$

Recall the VTSDWC:

$$S_{w[n]}^{h[n]}(x_0) = \gamma(h[n]) = x_0 + \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} f_{w(i)}(\gamma(s)) ds, \qquad t_{i+1} - t_i = h(i)$$

$$\gamma(t) = x_i + \int_{t_i}^t f_{w(i)}(\gamma(s)) ds, \qquad t_i \leq t \leq t_{i+1}$$

In our case, for each M we have periodic sequences w (the same for all M) and h_M ,

$$w = 123 \cdots N123 \cdots N123 \cdots$$
 and

$$h_M(0) = b_1 T/M$$
, $h_M(1) = b_2 T/M$, etc. For example,

$$S_{w[N+2]}^{h_{M}[N+2]}(x_{0}) = S_{2}^{b_{2}\frac{T}{M}} \circ S_{1}^{b_{1}\frac{T}{M}} \circ S_{N}^{b_{N}\frac{T}{M}} \circ S_{N-1}^{b_{N-1}\frac{T}{M}} \circ \cdots \circ S_{1}^{b_{1}\frac{T}{M}}(x_{0})$$

We prove that $\gamma_M(t) \underset{M \to \infty}{\to} S^t_{\sum_{i=1}^N b_i f_i}(x_0)$ for every $t \in [0, T]$.

Motivation: Splitting Method

The classical Lie product formula

$$e^{t(A+B)} = \lim_{M \to \infty} \left(e^{\frac{t}{M}A} e^{\frac{t}{M}B} \right)^M$$

where A and B are square matrices.

 This formula shows how to approximate the evolution function of the equation

$$\dot{x} = (A + B)x$$

by the evolution functions of the equations $\dot{x} = Ax$ and $\dot{x} = Bx$.

Conclusion

- We give a general framework to study systems that switch regimes at discrete moments of time.
- We study the aggregate dynamics for all possible regime switchings and time switchings, rather then approximating, optimizing, averaging.
- We explain what a continuous limit in VTSDWC is (when the dwell times go to zero).
- In the special case of a switched system, the continuous limit in VTSDWC coincides with the solutions of the corresponding differential inclusion.

