

Variable Time Step Dynamics With Choice Example: Difference Equations	Variable Time Step Dynamics With Choice Encoding regime switching and dwell time sequences
• discrete switched system: $x_{n+1} = x_n + h(n) f_{w(n)}(x_n)$,	Suppose there are 2 regimes (labeled 0 and 1) and 2 possible dwell times, <i>a</i> and <i>b</i> . The strategy of regime switching is given by an infinite sequence (word, string)
is already in the form	w = 10110100100001110 $w(0) = 1, w(1) = 0, w(2) = 1,$
$x_{n+1} = \mathcal{S}_{w(n)}^{h(n)}(x_n)$	The strategy of dwell times switching is given by an infinite sequence
We develop a language to describe the dynamics of systems of this sort	h = aabbabaabb $h(0) = a, h(1) = a, h(2) = b,$
We call it Variable Time Step Dynamics with Choice.	The corresponding trajectory of x is $x \to S_1^a(x) \to S_0^a(S_1^a(x)) \to S_1^b(S_0^a(S_1^a(x))) \to \dots$
(ロトイクト・ミト・ミト 差 つへで Sanja Gonzalez Živanović Lev Kapitanski* (D Continuous Limit in Dynamics with Choice July 26, 2012 5 / 32	・ロト・合Pト・ミト・ヨト ヨークへで Sanja Gonzalez Živanović Lev Kapitanski* (D Continuous Limit in Dynamics with Choice July 26, 2012 6 / 32
Variable Time Step Dynamics With Choice	Variable Time Step Dynamics With Choice
Variable Time Step Dynamics With Choice Mathematical Setting	Variable Time Step Dynamics With Choice Mathematical Setting
Variable Time Step Dynamics With Choice Mathematical Setting • X - the state space • \mathcal{J} - the set encoding different regimes • \mathcal{I} - the set of allowed dwell times $\mathcal{I} \subset (0, +\infty)$, could be an interval, or a finite set, • $\Sigma_{\mathcal{J}}$ - the space of one-sided infinite strings with symbols in \mathcal{J} $\Sigma_{\mathcal{I}}$ - the space of one-sided infinite strings with symbols in \mathcal{I} • $\sigma : \Sigma_{\mathcal{J}} \to \Sigma_{\mathcal{J}}$ - the shift operator: If $w = w(0)w(1)w(2) \dots \in \Sigma_{\mathcal{J}}$, then $\sigma(w) = w(1)w(2) \dots$ • $\sigma : \Sigma_{\mathcal{I}} \to \Sigma_{\mathcal{I}}$ - the shift operator: If $h = h(0)h(1)h(2) \dots \in \Sigma_{\mathcal{I}}$, then $\sigma(h) = h(1)h(2) \dots$	Variable Time Step Dynamics With Choice Mathematical Setting The right way to describe: Variable time step dynamics with choice is a discrete time dynamics on $\mathfrak{X} = X \times \Sigma_{\mathcal{J}} \times \Sigma_{\mathcal{I}}$ generated by iterations of the map $\mathfrak{S} : (x, w, h) \mapsto \left(S_{w(0)}^{h(0)}(x), \sigma(w), \sigma(h)\right)$ after <i>n</i> steps: $\mathfrak{S}^n(x, w, h) = \left(S_{w[n]}^{h[n]}(x), \sigma^n(w), \sigma^n(h)\right)$ $\mathcal{S}_{w[n]}^{h[n]}(x) = S_{w(n-1)}^{h(n-1)} \circ \cdots \circ S_{w(1)}^{h(1)} \circ S_{w(0)}^{h(0)}(x)$

Continuous Limit Duramian	Continuous Limit Duranniae
Assumptions	Properties
 On any bounded set A ⊂ X, the maps S^T_j are uniformly continuous with respect to j and τ. For any bounded B, d_H(B, S^{h(m-1)}_{W(m-1}) ∘ … ∘ S^{h(0)}_{W(0)}(B)) is small if the total time ∑^{m-1}_{i=0} h(i) is small, independetely of the choice of w and h. 	 <i>F_T(x)</i> is a nonempty, compact set. <i>F_T(x)</i> is continuous with respect to <i>T</i>, <i>F_T(B)</i> is compact.
Continuous Limit Dynamics	Continuous Limit Dynamics
Properties	Additional Assumption
For any $A, B \subset X$ bounded, • If $A \subset B, \mathcal{F}_T(A) \subset \mathcal{F}_T(B)$ • $\mathcal{F}_T(A \cup B) = \mathcal{F}_T(A) \cup \mathcal{F}_T(B)$ • $\overline{\bigcup_{x \in B} \mathcal{F}_T(x)} \subset \overline{\bigcup_{x \in \overline{B}} \mathcal{F}_T(x)} \subset \mathcal{F}_T(B) = \mathcal{F}_T(\overline{B})$ • For any $T_1, T_2 > 0$ we have $\mathcal{F}_{T_1}(\mathcal{F}_{T_2}(B)) \subset \mathcal{F}_{T_1+T_2}(B)$.	For every $T > 0$, there exists a modulus of continuity function ω^T such that for any sequence $(w, h) \subset \Sigma_{\mathcal{J}} \times \Sigma_{(0,\epsilon]}$, if $\sum_{i=0}^{n-1} h(i) = T$, then $\sup_{x,y:d(x,y) \leq \delta} d(S_{w[n]}^{h[n]}(x), S_{w[n]}^{h[n]}(y)) \leq \omega^T(\delta)$ For a fixed δ , the function $\omega^T(\delta)$ is nondecreasing in T .
(ロト(局)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三	イロトイラトイミトイミト ミークへで Sania Gonzalez Živanović, Lev Kapitanski* (D. Continuous Limit in Dynamics with Choice

Continuous Limit Dynamics	Special Case
Properties	Special Case
• \mathcal{F} has the semi-group property, i.e., $\mathcal{F}_{T_2}(\mathcal{F}_{T_1}(x)) = \mathcal{F}_{T_1+T_2}(x).$ • $\overline{\bigcup}_{x \in B} \mathcal{F}_T(x) = \bigcup_{x \in \overline{B}} \mathcal{F}_T(x) = \mathcal{F}_T(B) = \mathcal{F}_T(\overline{B})$ • For every $T > 0$, \mathcal{F}_T is continuous in the sense that if $x_n \to x$, then $\mathcal{O}_H(\mathcal{F}_T(x_n), \mathcal{F}_T(x)) \to 0$ • The triple ($\mathbb{R}^d, \mathcal{F}, \mathbb{R}_+$) is a multivalued semi-dynamical system.	• $\dot{x}(t) = f_i(x(t)), x(0) = x_0, \ i = 1,, N$ • $f_1,, f_N : \mathbb{R}^n \to \mathbb{R}^n$ are Lipschitz continuous maps • Denote by $S_i^{\tau}(x_0)$ the solution of $\dot{x}(t) = f_i(x(t)), x(0) = x_0$ at time τ . We have $S_i^{\tau}(x_0) = x_0 + \int_0^{\tau} f_i(x(s)) ds.$
Consist Cons	Canada Cana
Special Case	Special Case
 It follows from general theory of ODEs that the maps S^T_i are continuous and bounded. The maps S^T_i satisfy all the Assumptions previously stated. The set F_T(x₀) is non-empty and has all the properties stated before. 	• For any $(w, h) \in \Sigma_{\mathcal{J}} \times \Sigma_{(0,\epsilon]}$, iterates are defined as $S_{w[n]}^{h[n]}(x_0) = \gamma(h[n]) = x_0 + \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} f_{w(i)}(\gamma(s)) ds, t_{i+1} - t_i = h(i)$ $\gamma(t) = x_i + \int_{t_i}^{t} f_{w(i)}(\gamma(s)) ds, t_i \le t \le t_{i+1}$

Special Case	Special Case
Main Theorem	Sketch of the Proof
Main Theorem 1) $\mathcal{DI}_{[0,T]}(x_0) = \mathcal{CL}_{[0,T]}(x_0),$ 2) In particular, reachable set of the differential inclusion at time t is $\mathcal{F}_t(x_0)$, i.e., $\mathcal{DI}_t(x_0) = \mathcal{F}_t(x_0).$	Proof: $C\mathcal{L}_{[0,T]}(x_0) \subset \mathcal{DI}_{[0,T]}(x_0)$ • is standard in the theory of DIs. Proof: $C\mathcal{L}_{[0,T]}(x_0) \supset \mathcal{DI}_{[0,T]}(x_0)$ a) Every solution of DI, $x(\cdot) \in \mathcal{DI}_{[0,T]}(x_0)$, is a solution of the so-called control system $\dot{x}(t) = \sum_{i=1}^{N} \alpha_i(t) f_i(x(t)), x(0) = x_0$ where $\alpha_i(\cdot)$ are some measurable functions with $\sum_{i=1}^{N} \alpha_i(t) = 1$ for a.e. $t \in [0, T]$.
Sanja Gonzalez zivanović Lev Kapitanski (Li Continuous Linni, in Dynamics with Choice Suly 26, 2012 237 32 Special Case	Sanja Gorizalez zivanović Lev Kapitanski (L. Continuous Linnit in Dynamics with Choice Suby 20, 2012 20732 Special Case
Sketch of the Proof $Proof: C\mathcal{L}_{[0,T]}(x_0) \supset D\mathcal{I}_{[0,T]}(x_0)$ b) First we show that every solution of the control system can be approximated by solutions of the system $\dot{x}(t) = \sum_{i=1}^{N} b_i(t) f_i(x(t)), x(0) = x_0$ where each $b_i(\cdot)$ is a step function, and $\sum_{i=1}^{N} b_i(t) = 1$. Denote the solution of this system by $S_{\sum_{i=1}^{N} b_i f_i}^t(x_0)$.	Sketch of The Proof - Splitting Method $Proof: C\mathcal{L}_{[0,T]}(x_0) \supset \mathcal{DI}_{[0,T]}(x_0)$ c) The key step: $S_{\sum_{i=1}^{N} b_i f_i}^T(x_0) = \lim_{M \to \infty} \left(S_N^{b_N \frac{T}{M}} \circ S_{N-1}^{b_{N-1} \frac{T}{M}} \circ \dots \circ S_1^{b_1 \frac{T}{M}} \right)^M(x_0)$

Special Case	Special Case
Recall the VTSDWC:	
$S_{w[n]}^{h[n]}(x_0) = \gamma(h[n]) = x_0 + \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} f_{w(i)}(\gamma(s)) ds, \qquad t_{i+1} - t_i = h(i)$	
$\gamma(t) = x_i + \int_{t_i}^t f_{w(i)}(\gamma(s)) ds, \qquad t_i \leq t \leq t_{i+1}$	We prove that $\gamma_M(t) \stackrel{\rightarrow}{\underset{M \to \infty}{\rightarrow}} S^t_{\sum_{i=1}^N b_i f_i}(x_0)$ for every $t \in [0, T]$.
In our case, for each M we have periodic sequences w (the same for all M) and h_M , $w = 123 \cdots N123 \cdots N123 \cdots$ and	
$h_M(0) = b_1 T/M$, $h_M(1) = b_2 T/M$, etc. For example,	
$S_{w[N+2]}^{h_{M}[N+2]}(x_{0}) = S_{2}^{b_{2}\frac{1}{M}} \circ S_{1}^{b_{1}\frac{1}{M}} \circ S_{N}^{b_{N}\frac{1}{M}} \circ S_{N-1}^{b_{N-1}\frac{1}{M}} \circ \dots \circ S_{1}^{b_{1}\frac{1}{M}}(x_{0})$	
 ロ ト く 合 ト く き ト く き ト き う へ ぐ Sanja Gonzalez Živanović Lev Kapitanski* (D Continuous Limit in Dynamics with Choice July 26, 2012 29 / 32 	Sanja Gonzalez Živanović Lev Kapitanski* (C Continuous Limit in Dynamics with Choice July 26, 2012 30 / 32
Special Case	Special Case
Special Case Motivation: Splitting Method	Special Case Conclusion
Special Case Motivation: Splitting Method The classical Lie product formula	Special Case Conclusion We give a general framework to study systems that switch regimes at discrete moments of time.
• The classical Lie product formula $e^{t(A+B)} = \lim_{M \to \infty} \left(e^{\frac{t}{M}A} e^{\frac{t}{M}B} \right)^M$	Special Case Conclusion We give a general framework to study systems that switch regimes at discrete moments of time. We study the aggregate dynamics for all possible regime switchings and time switchings, rather then approximating, optimizing, averaging
• The classical Lie product formula $e^{t(A+B)} = \lim_{M \to \infty} \left(e^{\frac{t}{M}A} e^{\frac{t}{M}B} \right)^M$ where <i>A</i> and <i>B</i> are square matrices.	 Special Case Conclusion We give a general framework to study systems that switch regimes at discrete moments of time. We study the aggregate dynamics for all possible regime switchings and time switchings, rather then approximating, optimizing, averaging.
• The classical Lie product formula $e^{t(A+B)} = \lim_{M \to \infty} \left(e^{\frac{t}{M}A} e^{\frac{t}{M}B} \right)^M$ where <i>A</i> and <i>B</i> are square matrices. • This formula shows how to approximate the evolution function of the equation	 Special Case Conclusion We give a general framework to study systems that switch regimes at discrete moments of time. We study the aggregate dynamics for all possible regime switchings and time switchings, rather then approximating, optimizing, averaging. We explain what a continuous limit in VTSDWC is (when the dwell times go to zero).
• The classical Lie product formula $e^{t(A+B)} = \lim_{M \to \infty} \left(e^{\frac{t}{M}A} e^{\frac{t}{M}B} \right)^{M}$ where A and B are square matrices. • This formula shows how to approximate the evolution function of the equation $\dot{x} = (A+B)x$	 Special Case Conclusion We give a general framework to study systems that switch regimes at discrete moments of time. We study the aggregate dynamics for all possible regime switchings and time switchings, rather then approximating, optimizing, averaging. We explain what a continuous limit in VTSDWC is (when the dwell times go to zero). In the special case of a switched system, the continuous limit in
• The classical Lie product formula $e^{t(A+B)} = \lim_{M \to \infty} \left(e^{\frac{t}{M}A} e^{\frac{t}{M}B} \right)^{M}$ where A and B are square matrices. • This formula shows how to approximate the evolution function of the equation $\dot{x} = (A+B)x$ by the evolution functions of the equations $\dot{x} = Ax$ and $\dot{x} = Bx$.	 Special Case Conclusion We give a general framework to study systems that switch regimes at discrete moments of time. We study the aggregate dynamics for all possible regime switchings and time switchings, rather then approximating, optimizing, averaging. We explain what a continuous limit in VTSDWC is (when the dwell times go to zero). In the special case of a switched system, the continuous limit in VTSDWC coincides with the solutions of the corresponding differential inclusion.
• The classical Lie product formula $e^{t(A+B)} = \lim_{M \to \infty} \left(e^{\frac{t}{M}A} e^{\frac{t}{M}B} \right)^{M}$ where A and B are square matrices. • This formula shows how to approximate the evolution function of the equation $\dot{x} = (A+B)x$ by the evolution functions of the equations $\dot{x} = Ax$ and $\dot{x} = Bx$.	 Special Case Conclusion We give a general framework to study systems that switch regimes at discrete moments of time. We study the aggregate dynamics for all possible regime switchings and time switchings, rather then approximating, optimizing, averaging. We explain what a continuous limit in VTSDWC is (when the dwell times go to zero). In the special case of a switched system, the continuous limit in VTSDWC coincides with the solutions of the corresponding differential inclusion.