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Variable Time Step Dynamics With Choice

@ We study systems that switch their modes of operation (regimes)
at discrete moments of time.

@ The intervals between switching — dwell times — may vary.

@ The number of modes may be finite or infinite.

@ One-step evolution map: S} : x — 57 (x),
o 7 —dwell time
@ j—regime used during this time interval

. . T
@ Dynamics: Xn.1 = SJ"(xn)

@ We study all possible regime switchings and dwell time sequences
(deterministic picture)
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B Continuous Limit in Dynamics with Choice

Example: Switched System

X = fwn(x) onthe interval [tn, th11),

lo < t; < ... are the switching times,

N different regimes labeled by elements of set 7 = {1,2,..., N}

N /VARR S

Each f,,) is taken from a finite set of functions {fo, ..

w: Ny — {1,2,..., N} is a regime switching function,

Time intervals between switching (dwell times) h(n) = t,.1 — t,

Xo — initial state; after n steps the state will be x,

Xn+1 = va((?,)) (Xn)

REWENCI P FAC U (MR- CIICUE M8 Continuous Limit in Dynamics with Choice July 26, 2012 4/32




Example: Difference Equations

@ discrete switched system:

Xn+1 = Xn + h(N) fn)(Xn) .

is already in the form

Xnt1 = Suy (%n)

We develop a language to describe the dynamics of systems of
this sort.

We call it Variable Time Step Dynamics with Choice.
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Mathematical Setting

@ X —the state space
@ J —the set encoding different regimes

@ 7 —the set of allowed dwell times
Z C (0, +00), could be an interval, or a finite set,...

@ ¥ ;7 —the space of one-sided infinite strings with symbols in 7
Y 7 — the space of one-sided infinite strings with symbols in 7

@ 0 : Y7 — ¥ 7 —the shift operator: If w = w(0O)w(1)w(2)--- € £ 7,
then o(w) = w(1)w(2)...

@ o0 : Y1 — X7 —the shift operator: If h= h(0)h(1)h(2)--- € X7,
then o(h) = h(1)h(2) ...

othemaps §7: X = X, jeJ, 7€l
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Encoding regime switching and dwell time sequences

Suppose there are 2 regimes (labeled 0 and 1) and 2 possible dwell
times, aand b.

The strategy of regime switching is given by an infinite sequence
(word, string)

w =10110100100001110... w(0)=1,w(1)=0,w(2) =1,...
The strategy of dwell times switching is given by an infinite sequence

h = aabbabaabb... h(0) =a,h(1)=a,h(2)=b,...
The corresponding trajectory of x is

x = S3(x) = S§(S7(x)) — SH(SH(S(x))) = ...
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Mathematical Setting

The right way to describe:

Variable time step dynamics with choice is a discrete time dynamics on
X = X x X7 x X7 generated by iterations of the map

S: (x,w, h) — (sfv((?)(x), a(w), a(h))
after n steps:

&"(x, w, h) = (s”[”] (x), o"'(w), a”(h))

w(n]

il oy oh(n—1) h(1) _ oh(0)
Suin(¥) = Syin—1) ©* © S(1) © Sw()(¥)
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Continuous Limit Dynamics

Variable Time Step Dynamics With Choice

Reachable states attime T

O=fHh<h<- - <tp1<itm=T,

obtain all possible

and different orders of switching modes, w(0) w(1)..

Given an interval [0, T], consider different partitions of [0, T],
h(i) = tiy1 — 1

.w(m—1),to

Mathematical Setting

In this talk:
@ X =RY,

h h 1
X = S (X0) = Syim 1) 0 o)(x0). Z h(j) =
@ 7 is compact metric space,
x pu—
20 ) 94 s Z = (0,¢],
]
* 2 s - @ Each ST : X — X, is continuous, bounded for all j € J, 7 € (0, €]
O °
|
to =0t to ts ta ts =T
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Continuous Limit in Dynamics with Choice Continuous Limit in Dynamics with Choice
o . A Te o '8 ake the partition finer and finer...
2
* ° T3 {4 ° In the limit: all the points reachable at time T are all the limits of the
. h
e ° form limx_ oo SW’;[[Z’;]](XO)
@ Define the reachable sets: For every x € X, set
1 1 Fr(x)=xif T=0,and,if T >0,
0 #© to ts t4 ts te 17 T "
. . Fr(x) :{ eX|y= Ilm SWK[[Z"]]( ) for some sequence
e, . W ° e ©° o (Wi, hie) C zj X E (0., With e N\, +0
e ® s ° 1
Nk /* +00, and Z he(i) =T for all k > O}
i=0

[ | | | |

(I I I

0 T
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Assumptions

@ On any bounded set A C X, the maps SIT are uniformly continuous
with respect to j and .

@ For any bounded B,

dH(B, Sh(mf1) °

wim—1) """

o Sy (B))

is small if the total time S>7 " h(i) is small, independetely of the
choice of w and h.
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Properties

For any A, B ¢ X bounded,
e If AC B, Fr(A) C Fr(B)

e Fr(AUB) = Fr(A)U Fr(B)

® Uxes F1(X) € Uxes F7(x) € Fr(B) = Fr(B)

@ Forany Ty, T, > 0 we have Fr, (Fr,(B)) C Fr,47,(B).
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Properties

@ Fr(x) is a nonempty, compact set.
@ Fr(x) is continuous with respect to T,

@ F7(B) is compact.
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Additional Assumption

For every T > 0, there exists a modulus of continuity function w’ such
that for any sequence (w, h) C 7 x Lo q, if /=9 h(i) = T, then

d(Si7 (x), SI () < W' (6)

n
Sup w(n] w(n]

X,y:d(x,y)<o

For a fixed ¢, the function w’(§) is nondecreasing in T.
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Properties

@ F has the semi-group property, i.e.,

‘FTz(*Fﬂ(X)) :fT1+T2(X)'

@ Uyep F1(X) = Uxer F1(X) = Fr(B) = Fr(B)

@ Forevery T > 0, Fr is continuous in the sense that
if X, — X, then
Adn(Fr(xn), Fr(x)) — 0

@ The triple (RY, 7, R, ) is a multivalued semi-dynamical system.
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Special Case

continuous and bounded.

before.
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@ |t follows from general theory of ODEs that the maps S are
@ The maps S7 satisfy all the Assumptions previously stated.
@ The set Fr(xp) is non-empty and has all the properties stated
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Special Case

o x(t) = fi(x(1)), x(0)=xo, i=1,....N

@ fi,...,fy : R" — R™ are Lipschitz continuous maps
@ Denote by S7(xo) the solution of x(t) = fi(x(t)), x(0) = xp at
time 7. We have
ST (X0) = Xo +/ fi(x(s)) ds.
0
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Special Case

@ Forany (w, h) € X7 x (o4, iterates are defined as

n—1 fiq
Swim(x0) = v(hinl) = xo+ /t fu)(1($))dS, tiva—t; = (i)
i=0 "

t

v(t) = x; + ) fw(iy(7(s))ds,

i <t <ty
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Special Case

~ curves
Z7
X s TLe &
B T4
T L3
\ | | | | | | | |
\ \ \ \ \ \ \ \ \
0 t to ts T4 t5 te t7 T
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Special Case

Special Case

® CLyo,11(X0) = { € C([0, T]) | ¥ = limy_o0 vk}
— variable time step continuous limit dynamics

@ By construction, Fi(xo) = U, ¢(1)
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@ Every sequence (vx) C C([0, T]) has a convergent subsequence.
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Limiting curve

Zo o(1)
(TS fT(wo)
| 1
0 T
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Differential Inclusions (Dls)
@ Relaxed Dl:
x(t) e co{ A(x(1)), (x(1)), ... In(x(t)) }, x(0) =X
@ x € F(t,x)

@ Solution set of Dl is

DIpp.n(%) = {x(t) | x(t)isa.c., x(t) € coffy (x(1)),. .., fu(x(1)),

fora.e. t € [0, T], x(0) = Xo}
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Main Theorem

Main Theorem

1) DI, 7(%0) = CLp, 11(X0),

attime tis .Ft(Xo), ie., 'DIt(Xo) = ft(Xo).

2) In particular, reachable set of the differential inclusion

Sanja Gonzalez Zivanovi¢ Lev Kapitanski*

(

B Continuous Limit in Dynamics with Choice

July 26, 2012

25/32

Sketch of The Proof

Proof: CLo, 11(X0) 2 DZo,17(X0)

approximated by solutions of the system

N
X(t) = bi(t) fi(x(t), x(0)

i=1

Denote the solution of this system by St -
i=1 Yili

b) First we show that every solution of the control system can be

where each b;(+) is a step function, and Z,-’L bi(t) =1.

(X0)-

REWENCI P FAC U MR- CINICUE Sll(8 Continuous Limit in Dynamics with Choice

July 26, 2012

27/32

Sketch of the Proof

Proof: CLo, 11(X0) C DZo,77(X0)

@ is standard in the theory of Dls.
Proof: Cﬁ[O’T](Xo) D) DI[OJ—] (Xo)

a) Every solution of DI, x(-) € DI}g 11(x0), is a solution of the
so-called control system

N
X(t) =Y ait) i(x(1),  x(0) = xo
i=1

where «;(-) are some measurable functions with Z,’L ai(t) =1
fora.e. t € [0, T].
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Sketch of The Proof - Splitting Method

Proof: CLo 11(X0) 2 DZo,71(X0)

c) The key step:

ST — fim (SPVE o g2 s )"
S %0) = M\ S0 S Fo e 5T ) (%)
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Special Case

Recall the VTSDWC:

t/1

W(/) (7 )dS

Sum(%0) = 7(hln]) = o +Z / tio1 — t = h(i)

i <t<ti4

t
() = X + /t fu(iy(7(5))ds

In our case, for each M we have periodic sequences w (the same for

all M) and hy,,
w=123.--N123---N123.-- and
hy(0) = by T/M, hyy(1) = bo T /M, etc. For example,
T T T
ST (xy) = S37H 0 871 0 SHM o SUTH 0. 0 81 (x)
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Motivation: Splitting Method

@ The classical Lie product formula

M
. t t
e'A*B) — im (eMAeMB)

M—oc0
where A and B are square matrices.
@ This formula shows how to approximate the evolution function of

the equation
x=(A+ B)x

by the evolution functions of the equations x = Ax and x = Bx.
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Special Case

We prove that ~(t) e St for every t € [0, T].
—00
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Conclusion

@ We give a general framework to study systems that switch
regimes at discrete moments of time.

@ We study the aggregate dynamics for all possible regime
switchings and time switchings, rather then approximating,
optimizing, averaging.

@ We explain what a continuous limit in VTSDWC is (when the dwell
times go to zero).

@ In the special case of a switched system, the continuous limit in
VTSDWC coincides with the solutions of the corresponding
differential inclusion.
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