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Recurrence plots

Recurrence
Recurrence

I one of the fundamental properties of dynamical systems
I introduced by Henri Poincaré in 1890

Poincaré Recurrence Theorem
I Neglecting some exceptional trajectories, the occurrence of

which is infinitely improbable, it can be shown, that the
system recurs infinitely many times as close as one wishes to
its initial state.

I If (X ,B, µ, f ) is a measure-theoretical dynamical system,
then for any measurable set A and for µ-a.e. x ∈ A it holds
that

f n(x) ∈ A for infinitely many n ∈ N



Asymptotic recurrence quantification analysis

Recurrence plots

Visualization of recurrence
Recurrence plots (RP)

I introduced by Eckmann, Kamphorst, Ruelle (1987)

Construction:
I fix a DS (X , f ), a point x ∈ X and its trajectory

x0 = x , x1 = f (x0), x2 = f (x1), . . . ,

I calculate the n × n recurrence matrix RMn = (Rij)ij<n

Rij =

{
1 if xi ≈ xj

0 if xi 6≈ xj
xi ≈ xj ⇐⇒ d(xi , xj) ≤ ε

I recurrence plot: the “black-and-white image” of RMn
I black dot at the point (i , j) iff Rij = 1 (recurrence)
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RP of a periodic trajectory (period 10)
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Recurrence plots

RP of the full logistic map (f (x) = 4x(1− x), x = 0.1, ε = 0.1)
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Recurrence plots

RP of an RND generator
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Recurrence plots

Patterns in RPs

Diagonal segments (segments parallel to the main diagonal)
I recurrence of a part of the trajectory

Vertical segments
I trajectory “trapped” near fixed points
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Recurrence quantification analysis (RQA)
Recurrence quantification analysis (RQA)

I quantification of structures of RPs
I mainly based on

I diagonal segments
I vertical segments

Introduced by
I Zbilut and Webber in 1992
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Recurrence quantification analysis

RR: Recurrence rate
RRk : k-recurrence rate

I density of recurrences in diagonal segments of length ≥ k

RRk = RRk
xn(ε) =

2
n(n − 1)

∑
l≥k

l · nl

I nl : the number of diagonal segments of length l in the n × n
recurrence plot
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Recurrence quantification analysis

RR: Recurrence rate
RRk : k-recurrence rate

I density of recurrences in diagonal segments of length ≥ k

RRk = RRk
xn(ε) =

2
n(n − 1)

∑
l≥k

l · nl

I nl : the number of diagonal segments of length l in the n × n
recurrence plot

Example

I period 10: RR1 = 9.9%
I full logistic: RR1 = 10.8%
I RND: RR1 = 9.7%
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RR: Recurrence rate
Special case: RR1 = correlation sum

I Grassberger, Procaccia (1983)
I for n→∞: probability that x returns to its ε-neighborhood

Theorem (Pesin, Tempelman (1995))
If µ is an ergodic measure, then for µ-a.e. x ∈ X recurrence rates
converge (uniformly in ε) to the correlation integral

RR1
xn(ε) −→

∫
X

µB(y , ε) dµ(y) for n→∞
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DET: Determinism
DET k : k-determinism

I the ratio of recurrences in “long” diagonal segments
to all recurrences

DET k = DET k
xn(ε) =

RRk

RR1 =

∑
l≥k l · nl∑
l≥1 l · nl

I nl : the number of diagonal segments of length l in the n × n
recurrence plot

Interpretation
I How well one can predict k members of the trajectory

based on an observed recurrence?
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DET: Determinism
DET k : k-determinism

I the ratio of recurrences in “long” diagonal segments
to all recurrences

DET k = DET k
xn(ε) =

RRk

RR1 =

∑
l≥k l · nl∑
l≥1 l · nl

Example

I period 10: DET 5 = 100.0%
I full logistic: DET 5 = 20.2%
I RND: DET 5 = 0.1%
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Other RQA measures
RQA measures based on diagonal segments

I Lmax: maximal diagonal segment length
I Lavg: average diagonal segment length
I DIV : divergence (1/Lmax)
I ENTR : (Shannon) entropy of diagonal segment lengths
I TREND: measure of non-stationarity
I RATIO: ratio of DET and RR

RQA measures based on vertical segments
I LAM: laminarity
I TT : (average) trapping time
I Vmax: maximal vertical segment length
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Applications of RQA
Nonlinear time series analysis

I linearity and nonlinearity
I determinism, (low-dimensional) chaos and randomness
I noise level, prediction time, . . .

Applications of RQA
I life and earth sciences
I chemistry and physics
I finance and economics
I . . .

Survey:
I Marwan, Romano, Thiel, Kurths:

Recurrence plots for the analysis of complex systems
Physics Reports 438 (2007), 237 – 329
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Asymptotic determinism
Asymptotic RQA measures derived from DET k

xn(ε)

I asymptotic k-determinism: n→∞
I based on the whole trajectory

I asymptotic determinism: k →∞
I infinite prediction horizon
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Asymptotic determinism

Definition (Asymptotic determinism)
For every ε > 0 and k ∈ N we define the upper, lower asymptotic
k-determinisms by

DET k
x (ε) = lim sup

n→∞
DET k

xn(ε), DET k
x (ε) = lim inf

n→∞
DET k

xn(ε).

and upper, lower asymptotic determinisms by

DET x(ε) = lim sup
k→∞

DET k
x (ε), DET x(ε) = lim inf

k→∞
DET k

x (ε).

If the corresponding limits exist, we denote them simply by
DET k

x (ε) and DETx(ε).
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Asymptotic determinism
Basic questions about asymptotic determinism

I Is the determinism positive or even equal to one?
I infinitely “predictable” trajectories

I If the determinism is zero, how fast the convergence to zero
is?

I to estimate the maximal “prediction time”
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Asymptotic determinism

Proposition
If X is a compact metric space, then for every ε > 0 there is η > 0:

DET k
x (ε) ≥ ηk for every x ∈ X , k ≥ 1
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Asymptotic determinism

Proposition
If X is a compact metric space, then for every ε > 0 there is η > 0:

DET k
x (ε) ≥ ηk for every x ∈ X , k ≥ 1

Definition
For given x and ε we say that the determinism goes to zero
exponentially fast provided there is λ ∈ (0, 1):

DET k
x (ε) ≤ λk for every k
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Asymptotic RQA and interval dynamics
Setting:

I X = [0, 1] unit interval
I f : [0, 1]→ [0, 1] continuous interval map

Main results
I characterization of Li-Yorke chaotic maps
I characterization of positive entropy maps
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Asymptotic RQA and interval dynamics
Setting:

I X = [0, 1] unit interval
I f : [0, 1]→ [0, 1] continuous interval map

Main results
I characterization of Li-Yorke chaotic maps
I characterization of positive entropy maps

Recall that f is Li-Yorke chaotic iff
∃ uncountable set S such that for every x 6= y from S :

lim inf
n→∞

d(f n(x), f n(y)) = 0 lim sup
n→∞

d(f n(x), f n(y)) > 0
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Zero entropy case — finite ω-limit sets
Omega-limit set ωf (x)

I the set of all limit points of the trajectory (f n(x))n≥0 of x

If ωf (x) is finite then
I f |ωf (x) is a periodic orbit
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Zero entropy case — finite ω-limit sets

Example (Logistic map: f (x) = 3.55x(1− x), x = 0.1, ε = 0.1)
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Zero entropy case — finite ω-limit sets

Lemma
If ωf (x) is finite, then ∃ ε0 > 0:

DETx(ε) = 1 for every ε ∈ (0, ε0)
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Zero entropy case — finite ω-limit sets

Lemma
If ωf (x) is finite, then ∃ ε0 > 0:

DETx(ε) = 1 for every ε ∈ (0, ε0)

Corollary
If f : I → I is strongly non-chaotic (that is, f has only finite ω-limit
sets), then:

DETx(ε) = 1 for every x ∈ I and small ε > 0
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Zero entropy case — infinite ω-limit sets

Example
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Zero entropy case — infinite ω-limit sets

Example

Omega-limit sets
I (unique) 2p-periodic orbit for every p ≥ 0

I DET = 1
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Zero entropy case — infinite ω-limit sets

Example

Omega-limit sets
I C : Cantor ternary set

I f |C is conjugate to the dyadic adding machine τ
I τ is an isometry, hence it has DET = 1
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Zero entropy case — infinite ω-limit sets

Example
Recurrence plot of x = 0, ε = 1

9 :
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Zero entropy case — infinite ω-limit sets

Example
Recurrence plot of x = 0, ε = 1

9 −
1
81 :
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Zero entropy case — infinite ω-limit sets

Example
Dependance of determinism on ε (for x = 0)
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Zero entropy case — infinite ω-limit sets

Example
Properties of determinism of x with ωf (x) = C :

I DETx(ε/3) = DETx(ε) for every ε ≤ 1
I 5/8 ≤ DETx(ε) ≤ 1 for every ε > 0

I maxima at ε = 1
3k (k ≥ 0)

I minima at ε = 1
3k − 1

3k+2 (k ≥ 0)

I DETx(·) is
I strictly decreasing on [1/3, 8/9]
I “Cantor stairs”-like on [8/9, 1]
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Zero entropy case — not Li-Yorke chaotic maps

Lemma
Let f have zero entropy. If ωf (x) contains no two f -non separable
points, then

DET x(ε) > 0 for every ε > 0

I points y , z are f -separable if
∃ disjoint periodic intervals J 3 y , K 3 z

I otherwise: y , z are f -non separable
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Zero entropy case — not Li-Yorke chaotic maps

Lemma
Let f have zero entropy. If ωf (x) contains no two f -non separable
points, then

DET x(ε) > 0 for every ε > 0

Proof.
By [Smítal, 1986]

I the trajectory of x is approximable by periodic orbits
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Zero entropy case — not Li-Yorke chaotic maps

Lemma
Let f have zero entropy. If ωf (x) contains no two f -non separable
points, then

DET x(ε) > 0 for every ε > 0

Corollary
If f is not Li-Yorke chaotic then

DET x(ε) > 0 for every x ∈ I , ε > 0
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Zero entropy case — Li-Yorke chaotic maps

Lemma
Let f have zero entropy. If ωf (x) contains two f -non separable
points y , z, then

DETx(ε) = 0 for every 0 < ε < |y − z |
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Zero entropy case — Li-Yorke chaotic maps

Lemma
Let f have zero entropy. If ωf (x) contains two f -non separable
points y , z, then

DETx(ε) = 0 for every 0 < ε < |y − z |

Proposition
If f has zero entropy and is Li-Yorke chaotic then

DETx(ε) = 0 for some x ∈ I and every small ε > 0

Moreover, for no point x the determinism goes to zero
exponentially fast.
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Positive entropy case

Lemma
If B is a basic ω-limit set then
∃ (uncountably many) x ∈ B:

DET k
x (ε)→ 0 exponentially fast for k →∞

I B is a basic ω-limit set if
I it is an infinite ω-limit set
I contains a periodic point
I it is maximal (with respect to inclusion)
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Positive entropy case

Lemma
If B is a basic ω-limit set then
∃ (uncountably many) x ∈ B:

DET k
x (ε)→ 0 exponentially fast for k →∞

Ingredients of the proof.

I Blokh’s theorem about dynamics of f |B
I existence of horseshoes
I the theorem of Pesin-Tempelman
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Positive entropy case

Proposition
f : I → I has positive entropy if and only if
∃ (uncountably many) x ∈ I :

DET k
x (ε)→ 0 exponentially fast for k →∞
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Summary

Theorem
Let f : I → I be continuous. Then:

I f is not Li-Yorke chaotic iff

DET x(ε) > 0 for every x and small ε > 0
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Summary

Theorem
Let f : I → I be continuous. Then:

I f is Li-Yorke chaotic with zero entropy iff
∃ (uncountably many) x ∈ X:

DETx(ε) = 0 for every small ε > 0

and for no point x the determinism goes to zero exponentially
fast
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Summary

Theorem
Let f : I → I be continuous. Then:

I f has positive entropy iff
∃ (uncountably many) x ∈ X:

DET k
x (ε)→ 0 exponentially fast for k →∞
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Summary
Strongly non-chaotic maps

I all trajectories are perfectly infinitely predictable

Not Li-Yorke chaotic maps
I all trajectories are infinitely predictable with positive accuracy

Li-Yorke chaotic zero entropy maps
I some trajectories are not infinitely predictable
I all trajectories are predictable with long prediction horizon

Positive entropy maps
I some trajectories are predictable only with short prediction

horizon
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Thanks for your attention!
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