Asymptotic recurrence quantification analysis

Vladimír Špitalský (with Jana Majerová)

Matej Bel University, Banská Bystrica, Slovakia

18th International Conference on Difference Equations and Applications Casa de Convalescència, Barcelona

July 22-27, 2012

Outline

Recurrence plots

Asymptotic recurrence quantification analysis

Recurrence quantification analysis

Asymptotic RQA characteristics

Asymptotic RQA and interval dynamics

Asymptotic recurrence quantification analysis

Recurrence plots

Outline

Recurrence plots

Recurrence quantification analysis

Asymptotic RQA characteristics

Asymptotic RQA and interval dynamics

Asymptotic recurrence quantification analysis

Recurrence plots

Recurrence

Recurrence

- ▶ one of the fundamental properties of dynamical systems
- ▶ introduced by Henri Poincaré in 1890

Poincaré Recurrence Theorem

- ▶ Neglecting some exceptional trajectories, the occurrence of which is infinitely improbable, it can be shown, that the system recurs infinitely many times as close as one wishes to its initial state.
- ▶ If (X, \mathcal{B}, μ, f) is a measure-theoretical dynamical system, then for any measurable set A and for μ -a.e. $x \in A$ it holds that

 $f^n(x) \in A$ for infinitely many $n \in \mathbb{N}$

Recurrence plots

Visualization of recurrence

Recurrence plots (RP)

▶ introduced by Eckmann, Kamphorst, Ruelle (1987)

Construction:

▶ fix a DS (X, f), a point $x \in X$ and its trajectory

$$x_0 = x$$
, $x_1 = f(x_0)$, $x_2 = f(x_1)$, ...,

▶ calculate the $n \times n$ recurrence matrix $RM_n = (R_{ij})_{ij < n}$

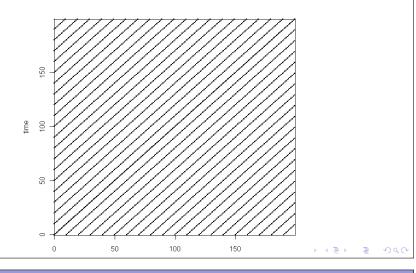
$$R_{ij} = \begin{cases} 1 & \text{if } x_i \approx x_j \\ 0 & \text{if } x_i \not\approx x_j \end{cases} \qquad x_i \approx x_j \iff d(x_i, x_j) \leq \varepsilon$$

- ▶ recurrence plot: the "black-and-white image" of RM_n
 - black dot at the point (i,j) iff $R_{ij} = 1$ (recurrence)

Asymptotic recurrence quantification analysis

Recurrence plots

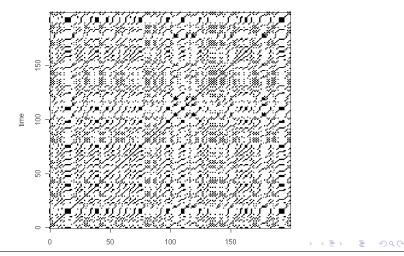
RP of a periodic trajectory (period 10)



Asymptotic recurrence quantification analysis

Recurrence plots

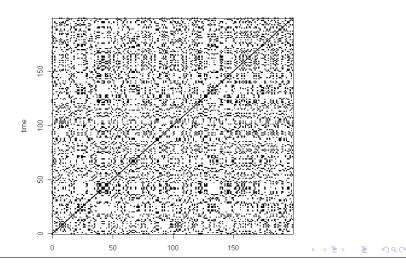
RP of the full logistic map $(f(x) = 4x(1-x), x = 0.1, \varepsilon = 0.1)$



Asymptotic recurrence quantification analysis

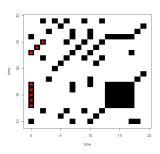
Recurrence plots

RP of an RND generator



Recurrence plots

Patterns in RPs

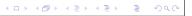


Diagonal segments (segments parallel to the main diagonal)

recurrence of a part of the trajectory

Vertical segments

trajectory "trapped" near fixed points



Asymptotic recurrence quantification analysis

Recurrence quantification analysis

Outline

Recurrence plots

Recurrence quantification analysis

Asymptotic RQA characteristics

Asymptotic RQA and interval dynamics

Asymptotic recurrence quantification analysis

Recurrence quantification analysis

Recurrence quantification analysis (RQA)

Recurrence quantification analysis (RQA)

- quantification of structures of RPs
- mainly based on
 - diagonal segments
 - vertical segments

Introduced by

► Zbilut and Webber in 1992

Asymptotic recurrence quantification analysis

Recurrence quantification analysis

RR: Recurrence rate

 RR^k : k-recurrence rate

• density of recurrences in diagonal segments of length $\geq k$

$$RR^k = RR_{\times n}^k(\varepsilon) = \frac{2}{n(n-1)} \sum_{l>k} l \cdot n_l$$

▶ n_l : the number of diagonal segments of length l in the $n \times n$ recurrence plot

Recurrence quantification analysis

RR: Recurrence rate

RR^k : k-recurrence rate

lacktriangle density of recurrences in diagonal segments of length $\geq k$

$$RR^{k} = RR_{\times n}^{k}(\varepsilon) = \frac{2}{n(n-1)} \sum_{l \geq k} l \cdot n_{l}$$

▶ n_l : the number of diagonal segments of length l in the $n \times n$ recurrence plot

Example

- period 10: $RR^1 = 9.9\%$
- full logistic: $RR^1 = 10.8\%$
- ► RND: $RR^1 = 9.7\%$

Asymptotic recurrence quantification analysis

Recurrence quantification analysis

RR: Recurrence rate

Special case: $RR^1 = \text{correlation sum}$

- ► Grassberger, Procaccia (1983)
- for $n \to \infty$: probability that x returns to its ε -neighborhood

Theorem (Pesin, Tempelman (1995))

If μ is an ergodic measure, then for μ -a.e. $x \in X$ recurrence rates converge (uniformly in ε) to the correlation integral

$$RR^1_{\times n}(\varepsilon) \longrightarrow \int\limits_X \mu B(y,\varepsilon) \, d\mu(y) \qquad \text{for } n \to \infty$$

Asymptotic recurrence quantification analysis

Recurrence quantification analysis

DET: Determinism

DET^k: k-determinism

► the ratio of recurrences in "long" diagonal segments to all recurrences

$$DET^k = DET_{\times n}^k(\varepsilon) = \frac{RR^k}{RR^1} = \frac{\sum_{l \ge k} l \cdot n_l}{\sum_{l > 1} l \cdot n_l}$$

▶ n_l : the number of diagonal segments of length l in the $n \times n$ recurrence plot

Interpretation

► How well one can predict *k* members of the trajectory based on an observed recurrence?

Asymptotic recurrence quantification analysis

Recurrence quantification analysis

DET: Determinism

DET^k: k-determinism

► the ratio of recurrences in "long" diagonal segments to all recurrences

$$DET^k = DET^k_{\times n}(\varepsilon) = \frac{RR^k}{RR^1} = \frac{\sum_{l \ge k} l \cdot n_l}{\sum_{l > 1} l \cdot n_l}$$

Example

- period 10: $DET^5 = 100.0\%$
- full logistic: $DET^5 = 20.2\%$
- ► RND: $DET^5 = 0.1\%$

Recurrence quantification analysis

Other RQA measures

RQA measures based on diagonal segments

- ► L_{max}: maximal diagonal segment length
- ► L_{avg}: average diagonal segment length
- ▶ *DIV*: divergence $(1/L_{max})$
- ► ENTR: (Shannon) entropy of diagonal segment lengths
- ► TREND: measure of non-stationarity
- ► RATIO: ratio of DET and RR

RQA measures based on vertical segments

- ► *LAM*: laminarity
- ► *TT*: (average) trapping time
- ▶ V_{max}: maximal vertical segment length

Asymptotic recurrence quantification analysis

Recurrence quantification analysis

Applications of RQA

Nonlinear time series analysis

- ▶ linearity and nonlinearity
- ▶ determinism, (low-dimensional) chaos and randomness
- ▶ noise level, prediction time, ...

Applications of RQA

- ▶ life and earth sciences
- chemistry and physics
- finance and economics

Survey:

► Marwan, Romano, Thiel, Kurths:

Recurrence plots for the analysis of complex systems

Physics Reports 438 (2007), 237 – 329

Asymptotic recurrence quantification analysis

-Asymptotic RQA characteristics

Outline

Recurrence plots

Recurrence quantification analysis

Asymptotic RQA characteristics

Asymptotic RQA and interval dynamic

Asymptotic recurrence quantification analysis

Asymptotic RQA characteristics

Asymptotic determinism

Asymptotic RQA measures derived from $DET_{\times n}^k(\varepsilon)$

- ▶ asymptotic k-determinism: $n \to \infty$
 - based on the whole trajectory
- ightharpoonup asymptotic determinism: $k \to \infty$
 - ▶ infinite prediction horizon

Asymptotic determinism

Definition (Asymptotic determinism)

For every $\varepsilon>0$ and $k\in\mathbb{N}$ we define the upper, lower asymptotic k-determinisms by

$$\overline{DET}_{x}^{k}(\varepsilon) = \limsup_{n \to \infty} DET_{xn}^{k}(\varepsilon), \quad \underline{DET}_{x}^{k}(\varepsilon) = \liminf_{n \to \infty} DET_{xn}^{k}(\varepsilon).$$

and upper, lower asymptotic determinisms by

$$\overline{DET}_{x}(\varepsilon) = \limsup_{k \to \infty} \overline{DET}_{x}^{k}(\varepsilon), \quad \underline{DET}_{x}(\varepsilon) = \liminf_{k \to \infty} \underline{DET}_{x}^{k}(\varepsilon).$$

If the corresponding limits exist, we denote them simply by $DET_x^k(\varepsilon)$ and $DET_x(\varepsilon)$.

Asymptotic recurrence quantification analysis

Asymptotic RQA characteristics

Asymptotic determinism

Basic questions about asymptotic determinism

- ▶ Is the determinism positive or even equal to one?
 - ▶ infinitely "predictable" trajectories
- ► If the determinism is zero, how fast the convergence to zero is?
 - ▶ to estimate the maximal "prediction time"

Asymptotic recurrence quantification analysis

Asymptotic RQA characteristics

Asymptotic determinism

Proposition

If X is a compact metric space, then for every $\varepsilon > 0$ there is $\eta > 0$:

$$\underline{DET}_{x}^{k}(\varepsilon) \geq \eta^{k} \qquad \text{for every } x \in X, k \geq 1$$

Asymptotic recurrence quantification analysis

Asymptotic RQA characteristics

Asymptotic determinism

Proposition

If X is a compact metric space, then for every $\varepsilon > 0$ there is $\eta > 0$:

$$\underline{DET}_{x}^{k}(\varepsilon) \geq \eta^{k}$$
 for every $x \in X, k \geq 1$

Definition

For given x and ε we say that the determinism goes to zero exponentially fast provided there is $\lambda \in (0,1)$:

$$\overline{DET}_{x}^{k}(\varepsilon) \leq \lambda^{k}$$
 for every k

Outline

Recurrence plots

Recurrence quantification analysis

Asymptotic RQA characteristics

Asymptotic RQA and interval dynamics

◆ロト ◆園 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ② |

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Asymptotic RQA and interval dynamics

Setting:

- X = [0, 1] unit interval
- ▶ $f: [0,1] \rightarrow [0,1]$ continuous interval map

Main results

- characterization of Li-Yorke chaotic maps
- characterization of positive entropy maps

←□ ト ←□ ト ← 亘 ト ← 亘 ・ りへ ○

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Asymptotic RQA and interval dynamics

Setting:

- X = [0,1] unit interval
- $f:[0,1] \rightarrow [0,1]$ continuous interval map

Main results

- ► characterization of Li-Yorke chaotic maps
- characterization of positive entropy maps

Recall that f is Li-Yorke chaotic iff

 \exists uncountable set S such that for every $x \neq y$ from S:

$$\liminf_{n\to\infty} d(f^n(x), f^n(y)) = 0 \qquad \limsup_{n\to\infty} d(f^n(x), f^n(y)) > 0$$

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — finite ω -limit sets

Omega-limit set $\omega_f(x)$

• the set of all limit points of the trajectory $(f^n(x))_{n>0}$ of x

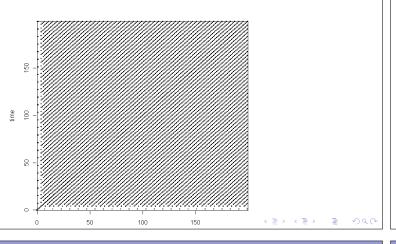
If $\omega_f(x)$ is finite then

• $f|_{\omega_f(x)}$ is a periodic orbit

Asymptotic RQA and interval dynamics

Zero entropy case — finite ω -limit sets

Example (Logistic map:
$$f(x) = 3.55x(1-x)$$
, $x = 0.1$, $\varepsilon = 0.1$)



Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — finite ω -limit sets

Lemma

If $\omega_f(x)$ is finite, then $\exists \varepsilon_0 > 0$:

$$DET_{\kappa}(\varepsilon) = 1$$
 for every $\varepsilon \in (0, \varepsilon_0)$

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — finite ω -limit sets

Lemma

If $\omega_f(x)$ is finite, then $\exists \varepsilon_0 > 0$:

$$DET_{\kappa}(\varepsilon) = 1$$
 for every $\varepsilon \in (0, \varepsilon_0)$

Corollary

If $f: I \to I$ is strongly non-chaotic (that is, f has only finite ω -limit sets), then:

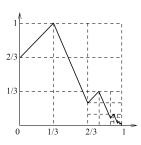
$$DET_x(\varepsilon) = 1$$
 for every $x \in I$ and small $\varepsilon > 0$

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — infinite ω -limit sets

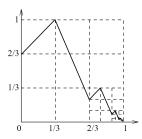
Example



Asymptotic RQA and interval dynamics

Zero entropy case — infinite ω -limit sets

Example



Omega-limit sets

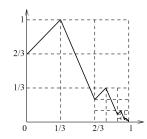
- (unique) 2^p -periodic orbit for every $p \ge 0$
 - ► *DET* = 1

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — infinite ω -limit sets

Example



Omega-limit sets

- ► C: Cantor ternary set
 - $f|_C$ is conjugate to the dyadic adding machine τ
 - ightharpoonup au is an isometry, hence it has DET = 1

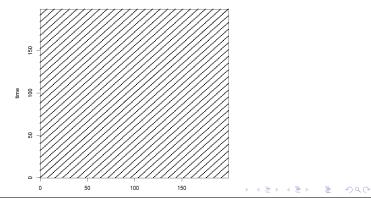
Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — infinite ω -limit sets

Example

Recurrence plot of x = 0, $\varepsilon = \frac{1}{9}$:



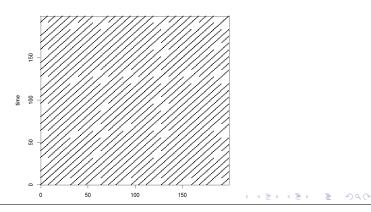
Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — infinite ω -limit sets

Example

Recurrence plot of x = 0, $\varepsilon = \frac{1}{9} - \frac{1}{81}$:

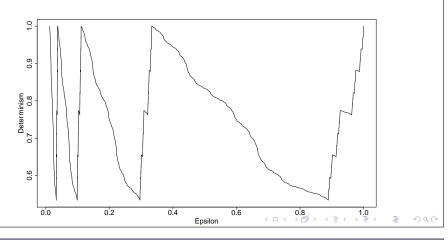


-Asymptotic RQA and interval dynamics

Zero entropy case — infinite ω -limit sets

Example

Dependance of determinism on ε (for x = 0)



Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — infinite ω -limit sets

Example

Properties of determinism of x with $\omega_f(x) = C$:

- ▶ $DET_{\vee}(\varepsilon/3) = DET_{\vee}(\varepsilon)$ for every $\varepsilon < 1$
- ▶ $5/8 \le DET_{\times}(\varepsilon) \le 1$ for every $\varepsilon > 0$
 - maxima at $\varepsilon = \frac{1}{3^k} \ (k \ge 0)$
- ightharpoonup DET_x(·) is
 - ▶ strictly decreasing on [1/3,8/9]
 - ► "Cantor stairs"-like on [8/9, 1]

←□ → ←□ → ← □ → ← ■ → へへへ

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — not Li-Yorke chaotic maps

Lemma

Let f have zero entropy. If $\omega_f(x)$ contains no two f-non separable points, then

$$\underline{DET}_{x}(\varepsilon) > 0$$
 for every $\varepsilon > 0$

- ▶ points y, z are f-separable if \exists disjoint periodic intervals $J \ni y, K \ni z$
- \triangleright otherwise: y, z are f-non separable

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — not Li-Yorke chaotic maps

Lemma

Let f have zero entropy. If $\omega_f(x)$ contains no two f-non separable points, then

$$DET_{\star}(\varepsilon) > 0$$
 for every $\varepsilon > 0$

Proof.

By [Smítal, 1986]

▶ the trajectory of *x* is approximable by periodic orbits

-Asymptotic RQA and interval dynamics

Zero entropy case — not Li-Yorke chaotic maps

Lemma

Let f have zero entropy. If $\omega_f(x)$ contains no two f-non separable points, then

$$\underline{DET}_{x}(\varepsilon) > 0$$
 for every $\varepsilon > 0$

Corollary

If f is not Li-Yorke chaotic then

$$\underline{DET}_{x}(\varepsilon) > 0$$
 for every $x \in I, \varepsilon > 0$

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — Li-Yorke chaotic maps

Lemma

Let f have zero entropy. If $\omega_f(x)$ contains two f-non separable points y, z, then

$$DET_{x}(\varepsilon) = 0$$
 for every $0 < \varepsilon < |y - z|$

◆ロト ◆部ト ◆恵ト ◆恵ト ■ からの

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Zero entropy case — Li-Yorke chaotic maps

Lemma

Let f have zero entropy. If $\omega_f(x)$ contains two f-non separable points y, z, then

$$DET_{\mathbf{x}}(\varepsilon) = 0$$
 for every $0 < \varepsilon < |y - z|$

Proposition

If f has zero entropy and is Li-Yorke chaotic then

$$DET_x(\varepsilon) = 0$$
 for some $x \in I$ and every small $\varepsilon > 0$

Moreover, for no point x the determinism goes to zero exponentially fast.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 り900

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Positive entropy case

Lemma

If B is a basic ω -limit set then

 \exists (uncountably many) $x \in B$:

$$\overline{DET}_{x}^{k}(\varepsilon) \to 0$$
 exponentially fast for $k \to \infty$

- \triangleright B is a basic ω -limit set if
 - ightharpoonup it is an infinite ω -limit set
 - contains a periodic point
 - ▶ it is maximal (with respect to inclusion)

-Asymptotic RQA and interval dynamics

Positive entropy case

Lemma

If B is a basic ω -limit set then \exists (uncountably many) $x \in B$:

$$\overline{DET}_{x}^{k}(\varepsilon) \to 0$$
 exponentially fast for $k \to \infty$

Ingredients of the proof.

- ▶ Blokh's theorem about dynamics of $f|_B$
- existence of horseshoes
- ▶ the theorem of Pesin-Tempelman

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Positive entropy case

Proposition

 $f: I \rightarrow I$ has positive entropy if and only if

$$\exists$$
 (uncountably many) $x \in I$:

$$\overline{DET}_x^k(\varepsilon) \to 0$$
 exponentially fast for $k \to \infty$

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Summary

Theorem

Let $f: I \rightarrow I$ be continuous. Then:

▶ f is not Li-Yorke chaotic iff

 $DET_{x}(\varepsilon) > 0$ for every x and small $\varepsilon > 0$

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Summary

Theorem

Let $f: I \rightarrow I$ be continuous. Then:

▶ f is Li-Yorke chaotic with zero entropy iff \exists (uncountably many) $x \in X$:

$$DET_{x}(\varepsilon) = 0$$
 for every small $\varepsilon > 0$

and for no point x the determinism goes to zero exponentially fast

Asymptotic RQA and interval dynamics

Summary

Theorem

Let $f: I \rightarrow I$ be continuous. Then:

▶ f has positive entropy iff \exists (uncountably many) $x \in X$:

 $\overline{DET}_{x}^{k}(\varepsilon) \to 0$ exponentially fast for $k \to \infty$

4□ > 4□ > 4 = > 4 = > = 90

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Thanks for your attention!

Asymptotic recurrence quantification analysis

Asymptotic RQA and interval dynamics

Summary

Strongly non-chaotic maps

▶ all trajectories are perfectly infinitely predictable

Not Li-Yorke chaotic maps

▶ all trajectories are infinitely predictable with positive accuracy

Li-Yorke chaotic zero entropy maps

- some trajectories are not infinitely predictable
- ▶ all trajectories are predictable with long prediction horizon

Positive entropy maps

 some trajectories are predictable only with short prediction horizon

