Functional envelopes of dynamical systems – old and new results

Ľubomír Snoha Matej Bel University, Banská Bystrica

> ICDEA 2012, Barcelona July 23-27, 2012

Functional envelopes of dynamical systems – old and new results

Based on:

- AKS J. Auslander, S. Kolyada, L'. Snoha, Functional envelope of a dynamical system. Nonlinearity 20 (2007), no. 9, 2245–2269.
 - A E. Akin, Personal communication
 - M M. Matviichuk, On the dynamics of subcontinua of a tree. J. Difference Equ. Appl. iFirst article, 2011, 1–11
- DSS T. Das, E. Shah, L'. Snoha, Expansivity in functional envelopes. Submitted.

Functional envelopes of dynamical systems – old and new results

- 1. Definition
- 2. Motivation
- 3. Some of the results on properties related to the simplicity of a system
- 4. Some of the results on orbit closures, ω -limit sets and range properties
- 5. Some of the results on dense orbits
- 6. Some of the results on topological entropy
- 7. Some of the results on expansivity
- 1.-4. by [AKS], 5. by [AKS]+[A], 6. by [AKS]+[M], 7. by [DSS].

1. Definition

$$(X, f)$$
 dyn. system $(X$ - compact metric, $f: X \rightarrow X$ cont.)

S(X) all cont. maps $X \to X$; with compact-open topology $(S_U(X)$... unif. metric, $S_H(X)$... Hausdorff metric) topol. semigroup with respect to the comp. of maps

$$F_f:S(X) o S(X) \ F_f(arphi)=f\circarphi$$
 uniformly cont. (for each of the two metrics)

$$(S(X), F_f)$$
 functional envelope of (X, f) trajectory of φ : $\varphi, f \circ \varphi, f^2 \circ \varphi, \dots$

- $(S_U(X), F_f)$ and $(S_H(X), F_f)$ are topol. conjugate, but in general not compact
 - ⇒ the same topological properties, but not necessarily the same metric properties

1) Functional difference equations (Sharkovsky et al.)

$$x(t+1) = f(x(t)), \quad t \ge 0, \qquad f: [a,b] \to [a,b]$$
 continuous

Every $\varphi:[0,1)\to [a,b]$ gives a solution $x:[0,\infty)\to [a,b]$:

$$egin{aligned} x(t) &= arphi(t), & t \in [0,1) \ x(t+1) &= f(arphi(t)) \ x(t+2) &= f^2(arphi(t)) \ & \dots & ext{we see here} \ \hline arphi, f \circ arphi, f^2 \circ arphi, \dots \end{aligned}$$

x continuous $\iff \varphi$ continuous and $\varphi(1^-) = f(\varphi(0))$

In such a case we can view the boxed maps as continuous maps $[0,1] \to [a,b]$, rather than $[0,1) \to [a,b]$.

Finally, if [a, b] = [0, 1] =: I, the boxed sequence is the trajectory of φ in $(S(I), F_f)$ (i.e. in the fc. envelope of (I, f)).

2) Semigroup theory

S - topological semigroup **density index** $D(S) = \text{least } n \text{ such that } S \text{ contains a dense subsemigroup with } n \text{ generators } (\infty \text{ if no such finite } n \text{ exists}).$

$$D(S(X)) = \begin{cases} 2, & \text{if } X = I^k \text{ (Schreier, Ulam, Sierpinski ...} \\ & \text{... Cook, Ingram, Subbiah (35 years story))} \\ 2, & \text{if } X = \text{Cantor set} \\ \infty, & \text{if } X = \mathbb{S}^k. \end{cases}$$

$$D(S(X)) = 2 \dots \exists \varphi, f$$
 such that the family of maps

$$[\varphi]$$
, f , φ^2 , $[f \circ \varphi]$, $\varphi \circ f$, f^2 , φ^3 , $f \circ \varphi^2$, $\varphi \circ f \circ \varphi$, $[f^2 \circ \varphi]$, ...

is dense in S(X). Can the smaller family of boxed maps be dense in S(X)? (i.e., can the orbit of φ in the fc. envelope $(S(X), F_f)$ be dense?)

3) Dynamical systems theory

 $2^X =$ closed subsets of the cpct. space X, with Hausdorff metric **Quasi-factor** of (X, f) = (closed, here) any subsystem of $(2^X, f)$. No distinction between maps and their graphs \Rightarrow

$$\boxed{(S_H(X),F_f)=\text{a quasi-factor of }(X\times X,\,\operatorname{id}\times f)}\ .$$

 $R_X := \{\operatorname{range}(\varphi) : \varphi \in S(X)\}$ with Hausdorff metric. Then

$$(R_X, f) =$$
a quasi-factor of (X, f) .

Moreover, (R_X, f) is a **factor** of $(S(X), F_f)$ $[f(\operatorname{range}(\varphi)) = \operatorname{range}(f \circ \varphi) \text{ and so } \varphi \mapsto \operatorname{range}(\varphi)$ is a homomorphism of $(S(X), F_f)$ onto (R_X, f)].

 \Rightarrow connection between properties of $(S(X), F_f)$ and (R_X, f) .

3. Some of the results on properties related to the simplicity of a system

Fact. $(S(X), F_f)$ contains an isomorphic copy of (X, f) (the copy is made of constant maps). Hence the name 'functional envelope'.

Corollary. All properties which are **hereditary down** (i.e. are inherited by subsystems) carry over from $(S(X), F_f)$ to (X, f) (if the property is metric, then regardless of whether S_U or S_H).

Examples: isometry, equicontinuity, uniform rigidity, distality, asymptoticity, proximality.

Direction from f to F_f :

(X,f)	isom.	equi.	u.rig.	dist.	asymp.	prox.
$(S_U(X), F_f)$	+	+	+	+	_	_
$(S_H(X), F_f)$	+	+	+	_	_	_

(X, f) distal $(S_H(X), F_f)$ may contain asymptotic pairs (X, f) asymptotic ... $(S_U(X), F_f)$ and $(S_H(X), F_f)$ may contain distal pairs

4. Some of the results on orbit closures, ω -limit sets and range properties

Definition. Let P be a property a map from S(X) may or may not have. It is said to be a **range property** if

range
$$\theta = \operatorname{range} \varphi \Longrightarrow (\varphi \text{ has } P \Leftrightarrow \theta \text{ has } P)$$

and it is said to be a range down property if

range
$$\theta \subseteq \operatorname{range} \varphi \Longrightarrow (\varphi \text{ has } P \Rightarrow \theta \text{ has } P)$$
.

Obviously, a range down property is a range property.

4. Some of the results on orbit closures, ω -limit sets and range properties

Some of many results for the illustration:

Theorem. The following are range down properties:

- (i) the compactness of an orbit closure,
- (ii) having a nonempty ω -limit set,
- (iii) recurrence,
- (iv) the simultaneous compactness and minimality of an orbit closure (the minimality of an orbit closure is only a range prop.)

5. Some of the results on dense orbits

$$D(S(X)) > 2 \Rightarrow$$
 no dense orbits in $(S(X), F_f)$
 $D(S(X)) = 2 \Rightarrow ?$

Answer:

- dense orbits in functional envelopes may exist (Example: Fc. envelope of the full shift on $A^{\mathbb{N}}$ contains dense orbits. $(A = \{0, 1\} \Rightarrow A^{\mathbb{N}} = Cantor, A = [0, 1] \Rightarrow A^{\mathbb{N}} = Hilbert cube)$
- for many X, even if D(S(X)) = 2, there are no dense orbits in the functional envelope $(S(X), F_f)$ regardless of the choice of f:

Theorem. Let X be a nondegenerate compact metric space satisfying (at least) one of the following conditions:

- (a) X admits a stably non-injective continuous selfmap,
- (b) X contains no homeo. copy of X with empty interior in X. Then there are no dense orbits in the functional envelope $(S(X), F_f)$.
 - covers all manifolds etc.

5. Some of the results on dense orbits

In particular, we see: If K is a Cantor set, then $(S(K), F_f)$ may contain dense orbits (i.e. may be topologically transitive).

Theorem (Akin 2007, personal communication): If K is a Cantor set and (K, f) is weakly mixing, then $(S(K), F_f)$ is also weakly mixing.

6. Some of the results on topological entropy

 F_f is uniformly continuous on $S_U(X)$ and $S_H(X)$ and so one can study the topological entropy of fc. envelopes.

$$d_U \ge d_H \implies \operatorname{ent}_U(F) \ge \operatorname{ent}_H(F) \ge \operatorname{ent}(f)$$

Examples and theorem:

- ▶ $\operatorname{ent}(f) = 0$ (even an asymptotic countable system or a nondecreasing interval map), $\operatorname{ent}_U(F_f) = +\infty$ So:
 - $\operatorname{ent}(f) = 0 \Rightarrow \operatorname{ent}_U(F_f) = 0$ (even on the interval)
- $\operatorname{ent}(f) = 0$ (even an asymptotic countable system), $\operatorname{ent}_H(F_f) = +\infty$ However:

Theorem (Matviichuk 2011): If
$$f$$
 is a tree map, then $\operatorname{ent}(f) = 0 \Rightarrow \operatorname{ent}_H(F_f) = 0$ $\operatorname{ent}(f) > 0 \Rightarrow \operatorname{ent}_H(F_f) = +\infty$

7. Some of the results on expansivity

homeo $f: X \to X$... expansive if $\exists \varepsilon > 0 \ \forall x, y \in X, x \neq y$ $\exists n \in \mathbb{Z} : d(f^n(x), f^n(y)) > \varepsilon$... continuum-wise expansive or c-w expansive if $\exists \varepsilon > 0 \ \forall K$ - a subcontinuum of X $\exists n \in \mathbb{Z} : \operatorname{diam} f^n(K) > \varepsilon$ map $f: X \to X$... positively expansive (pos. c-w expansive) if ... $\exists n > 0$...

$$(S_H(X), F_f)$$
 exp. \Longrightarrow (X, f) exp. \Longleftrightarrow $(S_U(X), F_f)$ exp. \Longrightarrow $(S_H(X), F_f)$ c-w exp. \Longrightarrow (X, f) c-w exp. \Longleftrightarrow $(S_U(X), F_f)$ c-w exp.

7. Some of the results on expansivity

Theorem

Let X be a compact metric space.

- 1. If X contains an infinite, zero dimensional subspace Z such that Z is open in X, then $(S_H(X), F_f)$ is never exp./pos. exp.
- 2. If X contains an arc, then $(S_H(X), F_f)$ is never c-w exp./pos. c-w exp. (hence, never exp./pos. exp.).