Averaging theorems for dynamic equations on time scales

Antonín Slavík Charles University, Prague, Czech Republic

International Conference on Difference Equations and Applications, Barcelona, 2012

Antonín Slavík Averaging theorems

ヘロン ヘアン ヘビン ヘビン

-

Historical background

- Lagrange and celestial mechanics (18th century)
- Reduction of

$$x'(t) = F(t, x(t), \varepsilon), \ x(t_0) = x_0$$

(where F is T-periodic in the first variable) to the standard form

$$x'(t) = \varepsilon f(t, x(t)) + O(\varepsilon^2), \ x(t_0) = x_0$$

• Expand *f*(*t*, *x*) into Fourier series with respect to *t* and neglect all time-dependent terms, keeping only

$$f^0(x) = \frac{1}{T} \int_0^T f(t, x) \, dt$$

- Averaged equation: $y'(t) = \varepsilon f^0(y(t)), y(t_0) = x_0$
- 20th century: proofs of asymptotic validity, nonperiodic averaging

Classical averaging theorems

Solutions of the initial-value problem

$$x'(t) = \varepsilon f(t, x(t)) + \varepsilon^2 g(t, x(t), \varepsilon), \ x(t_0) = x_0,$$

can be approximated by solutions of the averaged equation

$$y'(t) = \varepsilon f^0(y(t)), \quad y(t_0) = x_0,$$

where

$$f^{0}(y) = \frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t, y) dt$$

if f is a T-periodic function in the first variable and

$$f^0(y) = \lim_{T o \infty} rac{1}{T} \int_{t_0}^{t_0+T} f(t,y) \, dt$$

otherwise.

ヘロン ヘアン ヘビン ヘビン

3

Periodic case: Given a d > 0, there is an $\varepsilon_0 > 0$ and a c > 0 such that

 $\|\mathbf{x}(t) - \mathbf{y}(t)\| \leq c\varepsilon$

for every $\varepsilon \in (0, \varepsilon_0]$ and $t \in [t_0, t_0 + d/\varepsilon]$.

Nonperiodic case:

Given a d > 0 and a $\delta > 0$, there is an $\varepsilon_0 > 0$ such that

 $\|\mathbf{x}(t)-\mathbf{y}(t)\|\leq\delta$

for every $\varepsilon \in (0, \varepsilon_0]$ and $t \in [t_0, t_0 + d/\varepsilon]$.

- Ordinary differential equations with impulses
- Retarded functional differential equations
- Dynamic equations on time scales
- Generalized ordinary differenital equations

・ロト ・ 理 ト ・ ヨ ト ・

3

- Interval $I \subseteq \mathbb{R}$
- $F: \mathbb{R}^n \times I \to \mathbb{R}^n$

A function $x : I \to \mathbb{R}^n$ is called a solution of the generalized ordinary differential equation

$$\frac{dx}{d\tau} = DF(x,t), \ x(a) = x_0$$

whenever

$$x(s) = x_0 + \int_a^s DF(x(\tau), t)$$

for every $s \in I$, where the integral on the right-hand side is the Kurzweil integral.

Kurzweil integration

A function $F : [a, b] \times [a, b] \to \mathbb{R}^n$ is called Kurzweil integrable over [a, b] if there exists a vector $I \in \mathbb{R}^n$ such that given an $\varepsilon > 0$, there is a function $\delta : [a, b] \to \mathbb{R}^+$ such that

$$\left\|\sum_{j=1}^{k} \left(F(\tau_{j}, \alpha_{j}) - F(\tau_{j}, \alpha_{j-1})\right) - I\right\| < \varepsilon$$

for every partition with division points

$$\boldsymbol{a} = \alpha_0 \leq \alpha_1 \leq \cdots \leq \alpha_{k-1} \leq \alpha_k = \boldsymbol{b}$$

and tags $\tau_j \in [\alpha_{j-1}, \alpha_j]$ such that

$$[\alpha_{j-1},\alpha_j] \subset (\tau_j - \delta(t_j), \tau_j + \delta(\tau_j)), \ j \in \{1,\ldots,k\}.$$

Notation: $I = \int_{a}^{b} DF(\tau, t)$. $F(\tau, t) = f(\tau)t \Rightarrow$ Henstock-Kurzweil integral $\int_{a}^{b} f(s) ds$ $F(\tau, t) = f(\tau)g(t) \Rightarrow$ Kurzweil-Stieltjes integral $\int_{a}^{b} f(s) dg(s)$ An ordinary differential equation

$$x'(t) = f(x(t), t), \quad x(t_0) = x_0$$

is equivalent to the generalized ordinary differential equation

$$\frac{dx}{d\tau} = DF(x,t), \ x(t_0) = x_0,$$

where $F(x, t) = \int_{t_0}^t f(x, s) ds$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Periodic averaging for GODEs

$$\begin{split} B \subset \mathbb{R}^n, &\Omega = B \times [0, \infty), \, \varepsilon_0 > 0, \, L > 0, \, F : \Omega \to \mathbb{R}^n, \\ G : \Omega \times (0, \varepsilon_0] \to \mathbb{R}^n. \\ \text{Assume there exists a } T > 0 \text{ and a function } M : B \to \mathbb{R}^n \text{ such that } F(x, t + T) - F(x, t) = M(x) \text{ for every } x \in B \text{ and } \\ t \in [0, \infty). \text{ Let} \\ \hline F(x, T) \end{split}$$

$$F_0(x)=rac{F(x,T)}{T}, \ x\in B.$$

$$\frac{dx}{d\tau} = D\left[\varepsilon F(x,t) + \varepsilon^2 G(x,t,\varepsilon)\right], \ x(0) = x_0,$$

can be approximated by solutions of

$$y'(t) = \varepsilon F_0(y(t)), \ y(0) = x_0,$$

i.e. there exists a constant K > 0 such that

$$\|x(t) - y(t)\| \le K\varepsilon, \quad \varepsilon \in (0, \varepsilon_0], \ t \in [0, L/\varepsilon].$$

Extension of time scale functions

Given a real number $t \leq \sup \mathbb{T}$, let

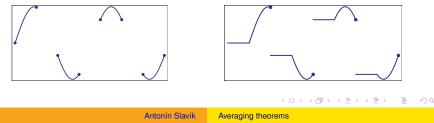
$$t^* = \inf\{s \in \mathbb{T}; s \ge t\}.$$

Further, let

$$\mathbb{T}^* = \left\{ \begin{array}{ll} (-\infty, \sup \mathbb{T}] & \quad \text{if } \sup \mathbb{T} < \infty, \\ (-\infty, \infty) & \quad \text{otherwise.} \end{array} \right.$$

Given a function $x : \mathbb{T} \to \mathbb{R}^n$, define $x^* : \mathbb{T}^* \to \mathbb{R}^n$ by

$$x^*(t) = x(t^*), t \in \mathbb{T}^*$$



Let $X \subset \mathbb{R}^n$ and assume that $f : X \times \mathbb{T} \to \mathbb{R}^n$ satisfies certain conditions. If $x : \mathbb{T} \to X$ is a solution of

$$x^{\Delta}(t) = f(x(t), t), \ x(t_0) = x_0,$$
 (1)

then $x^* : \mathbb{T}^* \to X$ is a solution of

$$\frac{dx}{d\tau} = DF(x,t), \quad x(t_0) = x_0, \tag{2}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへの

where $F(x,t) = \int_{t_0}^t f(x,s^*) dg(s)$ and $g(s) = s^*$.

Conversely, every solution $y : \mathbb{T}^* \to X$ of (2) has the form $y = x^*$, where $x : \mathbb{T} \to X$ is a solution of (1).

Let \mathbb{T} be a *T*-periodic time scale ($t \in \mathbb{T}$ implies $t + T \in \mathbb{T}$ and $\mu(t) = \mu(t + T)$) and *f* a *T*-periodic function in *t*. Consider the initial-value problems

$$\begin{aligned} x^{\Delta}(t) &= \varepsilon f(t, x(t)) + \varepsilon^2 g(t, x(t), \varepsilon), \quad x(t_0) = x_0, \\ y'(t) &= \varepsilon f^0(y(t)), \quad y(t_0) = x_0, \end{aligned}$$

where
$$f^{0}(y) = \frac{1}{\tau} \int_{t_0}^{t_0+T} f(t, y) \Delta t$$
.

Then (under certain assumptions on *f* and *g*), given a d > 0, there is a c > 0 such that

$$\|\mathbf{x}(t) - \mathbf{y}(t)\| \le c\varepsilon$$

for every $\varepsilon \in (0, \varepsilon_0]$ and $t \in [t_0, t_0 + d/\varepsilon]_{\mathbb{T}}$.

Let \mathbb{T} be a *T*-periodic time scale ($t \in \mathbb{T}$ implies $t + T \in \mathbb{T}$ and $\mu(t) = \mu(t + T)$) and *f* a *T*-periodic function in *t*. Consider the initial-value problems

$$\begin{aligned} x^{\Delta}(t) &= \varepsilon f(t, x(t)) + \varepsilon^2 g(t, x(t), \varepsilon), \quad x(t_0) = x_0, \\ y^{\Delta}(t) &= \varepsilon f^0(y(t)), \quad y(t_0) = x_0, \end{aligned}$$

where
$$f^{0}(y) = \frac{1}{\tau} \int_{t_0}^{t_0+T} f(t, y) \Delta t$$
.

Then (under certain assumptions on *f* and *g*), given a d > 0, there is a c > 0 such that

$$\|\mathbf{x}(t) - \mathbf{y}(t)\| \le c\varepsilon$$

for every $\varepsilon \in (0, \varepsilon_0]$ and $t \in [t_0, t_0 + d/\varepsilon]_{\mathbb{T}}$.

Application: Existence of periodic solutions

Let \mathbb{T} be a *T*-periodic time scale, $t_0 \in \mathbb{T}$, $p_0 \in \mathbb{R}^n$, r > 0, $\varepsilon_0 > 0$. Consider functions $f : [t_0, \infty)_{\mathbb{T}} \times B_r(p_0) \to \mathbb{R}^n$ and $g : [t_0, \infty)_{\mathbb{T}} \times B_r(p_0) \times (-\varepsilon_0, \varepsilon_0) \to \mathbb{R}^n$, which are *T*-periodic in the first argument and satisfy certain additional conditions.

If $f^0(p_0) = 0$ and the matrix $\frac{\partial f^0}{\partial x}(p_0)$ is invertible, then there exist numbers $\varepsilon_1 \in (0, \varepsilon_0)$, C > 0 and a continuous function $p : [-\varepsilon_1, \varepsilon_1] \rightarrow B_r(p_0)$ such that $p(0) = p_0$ and for every $\varepsilon \in [-\varepsilon_1, \varepsilon_1]$, the initial-value problem

$$x^{\Delta}(t) = \varepsilon f(t, x(t)) + \varepsilon^2 g(t, x(t), \varepsilon), \ x(t_0) = p(\varepsilon)$$

has a unique solution $x : [t_0, \infty)_{\mathbb{T}} \to \mathbb{R}^n$, which is *T*-periodic and satisfies

$$\|\mathbf{x}(t) - \mathbf{p}_0\| \le C |\varepsilon|, \ t \in [t_0, \infty)_{\mathbb{T}}.$$

Example

Consider the time scale $\mathbb{T}=\mathbb{Z}$ and the difference equation

$$\Delta x(t) = \varepsilon (1 - x(t) + (-1)^t), \ t \in \{0, 1, 2, \ldots\},$$

whose right-hand side is 2-periodic in t.

The corresponding averaged equation is $\Delta y(t) = \varepsilon f^0(y(t))$, where $f^0(x) = 1 - x$.

Equilibrium solution: $y(t) = p_0 = 1$, $\frac{\partial f^0}{\partial x}(p_0) = -1$

The previous theorem guarantees that the original difference equation has a 2-periodic solution near p_0 whenever $|\varepsilon|$ is sufficiently small.

Can be found analytically:

$$x(t) = 1 + (-1)^t \varepsilon / (\varepsilon - 2)$$

For $\varepsilon \in [-1, 1]$, we have $|x(t) - 1| \le |\varepsilon|$ for every $t \in \{0, 1, 2, ...\}$.

Nonperiodic averaging on time scales

Let \mathbb{T} be a time scale with $\sup \mathbb{T} = \infty$ and $\lim_{t\to\infty} \mu(t)/t = 0$, c > 0, and $B_c = \{x \in \mathbb{R}^n; \|x\| < c\}$. Consider $f : B_c \times [t_0, \infty)_{\mathbb{T}} \to \mathbb{R}^n$ and the initial-value problems

$$\begin{aligned} \mathbf{x}^{\Delta}(t) &= \varepsilon f(t, \mathbf{x}(t)), \ \mathbf{x}(t_0) = \mathbf{x}_0, \\ \mathbf{y}'(t) &= \varepsilon f^0(\mathbf{y}(t)), \ \mathbf{y}(t_0) = \mathbf{x}_0, \end{aligned}$$

where

$$f^0(y) = \lim_{T \to \infty, \ T \in \mathbb{T}} \frac{1}{T} \int_{t_0}^{t_0+T} f(y,s) \Delta s.$$

Then (under certain assumptions on *f*), given a d > 0 and a $\delta > 0$, there is an $\varepsilon_0 > 0$ such that

$$\|\mathbf{x}(t)-\mathbf{y}(t)\|\leq\delta$$

for every $\varepsilon \in (0, \varepsilon_0]$ and $t \in [t_0, t_0 + d/\varepsilon]_{\mathbb{T}}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- The condition lim_{t→∞} μ(t)/t = 0 guarantees that the assumptions of the GODE averaging theorem are satisfied. Is it possible to weaken or relax the condition on μ?
- Does there exist a nonperiodic averaging theorem where the averaged equation is a dynamic equation defined on the same time scale as the original equation?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

References

- J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (2nd edition), Springer, New York, 2007.
- Š. Schwabik, Generalized Ordinary Differential Equations, World Scientific, Singapore, 1992.
- A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations,
 J. Math. Anal. Appl. 385 (2012), 534–550.
- J. G. Mesquita, A. Slavík, *Periodic averaging theorems for* various types of equations, J. Math. Anal. Appl. 387 (2012), 862–877.
- A. Slavík, Averaging dynamic equations on time scales, J. Math. Anal. Appl. **388** (2012), 996–1012.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ