	Historical background
Averaging theorems for dynamic equations on time scales Antonín Slavík Charles University, Prague, Czech Republic	 Lagrange and celestial mechanics (18th century) Reduction of x'(t) = F(t, x(t), ε), x(t_0) = x_0 (where F is T-periodic in the first variable) to the standard form x'(t) = εf(t, x(t)) + O(ε²), x(t_0) = x_0 Expand f(t, x) into Fourier series with respect to t and neglect all time-dependent terms, keeping only
International Conference on Difference Equations and Applications, Barcelona, 2012	$f^0(x) = \frac{1}{T} \int_0^T f(t, x) dt$
< ロ > 4 回 > 4 □ >	 Averaged equation: y'(t) = εf⁰(y(t)), y(t₀) = x₀ 20th century: proofs of asymptotic validity, nonperiodic averaging
Antonin Slavik Averaging theorems	Antonín Slavík Averaging theorems
Classical averaging theorems	Quality of the approximation
Classical averaging theorems Solutions of the initial-value problem $x'(t) = \varepsilon f(t, x(t)) + \varepsilon^2 g(t, x(t), \varepsilon), x(t_0) = x_0,$ can be approximated by solutions of the averaged equation $y'(t) = \varepsilon f^0(y(t)), y(t_0) = x_0,$ where $f^0(y) = \frac{1}{T} \int_{t_0}^{t_0+T} f(t, y) dt$ if <i>f</i> is a <i>T</i> -periodic function in the first variable and $f^0(y) = \lim_{T \to \infty} \frac{1}{T} \int_{t_0}^{t_0+T} f(t, y) dt$	Quality of the approximationPeriodic case: Given a $d > 0$, there is an $\varepsilon_0 > 0$ and a $c > 0$ such that $ x(t) - y(t) \le c\varepsilon$ for every $\varepsilon \in (0, \varepsilon_0]$ and $t \in [t_0, t_0 + d/\varepsilon]$. Nonperiodic case: Given a $d > 0$ and a $\delta > 0$, there is an $\varepsilon_0 > 0$ such that $ x(t) - y(t) \le \delta$ for every $\varepsilon \in (0, \varepsilon_0]$ and $t \in [t_0, t_0 + d/\varepsilon]$.

Averaging theorems for other types of equations	Generalized ordinary differential equations
 Ordinary differential equations with impulses Retarded functional differential equations Dynamic equations on time scales Generalized ordinary differential equations 	• Interval $I \subseteq \mathbb{R}$ • $F : \mathbb{R}^n \times I \to \mathbb{R}^n$ A function $x : I \to \mathbb{R}^n$ is called a solution of the generalized ordinary differential equation $\frac{dx}{d\tau} = DF(x, t), \ x(a) = x_0$ whenever $x(s) = x_0 + \int_a^s DF(x(\tau), t)$ for every $s \in I$, where the integral on the right-hand side is the Kurzweil integral.
(ロ)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)	(ロ)(母)(き)(き) き の(の
Antonín Slavík Averaging theorems	Antonín Slavik Averaging theorems
Kurzweil integration	Classical ODEs vs. GODEs
A function $F : [a, b] \times [a, b] \to \mathbb{R}^n$ is called Kurzweil integrable over $[a, b]$ if there exists a vector $I \in \mathbb{R}^n$ such that given an $\varepsilon > 0$, there is a function $\delta : [a, b] \to \mathbb{R}^+$ such that $\left\ \sum_{i=1}^k (F(\tau_i, \alpha_i) - F(\tau_i, \alpha_{j-1})) - I \right\ < \varepsilon$	An ordinary differential equation
for every partition with division points $a = \alpha_0 \le \alpha_1 \le \dots \le \alpha_{k-1} \le \alpha_k = b$ and tags $\tau_j \in [\alpha_{j-1}, \alpha_j]$ such that $[\alpha_{j-1}, \alpha_j] \subset (\tau_j - \delta(t_j), \tau_j + \delta(\tau_j)), j \in \{1, \dots, k\}.$ Notation: $I = \int_a^b DF(\tau, t).$ $F(\tau, t) = f(\tau)t \Rightarrow$ Henstock-Kurzweil integral $\int_a^b f(s) ds$ $F(\tau, t) = f(\tau)g(t) \Rightarrow$ Kurzweil-Stieltjes integral $\int_a^b f(s) dg(s)$	$x'(t) = f(x(t), t), x(t_0) = x_0$ is equivalent to the generalized ordinary differential equation $\frac{dx}{d\tau} = DF(x, t), x(t_0) = x_0,$ where $F(x, t) = \int_{t_0}^t f(x, s) ds.$

Periodic averaging for GODEs

 $B \subset \mathbb{R}^{n}, \Omega = B \times [0, \infty), \varepsilon_{0} > 0, L > 0, F : \Omega \to \mathbb{R}^{n},$ $G : \Omega \times (0, \varepsilon_{0}] \to \mathbb{R}^{n}.$ Assume there exists a T > 0 and a function $M : B \to \mathbb{R}^{n}$ such that F(x, t + T) - F(x, t) = M(x) for every $x \in B$ and $t \in [0, \infty)$. Let $F_{0}(x) = \frac{F(x, T)}{T}, x \in B.$

Then, under certain assumption on F, G, and M, the solutions of ,

$$\frac{dx}{d\tau} = D\left[\varepsilon F(x,t) + \varepsilon^2 G(x,t,\varepsilon)\right], \quad x(0) = x_0,$$

can be approximated by solutions of

 $y'(t) = \varepsilon F_0(y(t)), \quad y(0) = x_0,$

i.e. there exists a constant K > 0 such that

Antonín Slavík

$$\|x(t) - y(t)\| \le K\varepsilon, \quad \varepsilon \in (0, \varepsilon_0], \ t \in [0, L/\varepsilon].$$

Extension of time scale functions

Given a real number $t \leq \sup \mathbb{T}$, let

$$t^* = \inf\{s \in \mathbb{T}; s \ge t\}.$$

Further, let

$$\mathbb{T}^* = \left\{ \begin{array}{ll} (-\infty, \text{sup } \mathbb{T}] & \quad \text{if } \text{sup } \mathbb{T} < \infty, \\ (-\infty, \infty) & \quad \text{otherwise.} \end{array} \right.$$

Given a function $x : \mathbb{T} \to \mathbb{R}^n$, define $x^* : \mathbb{T}^* \to \mathbb{R}^n$ by

$$x^*(t)=x(t^*), \ t\in\mathbb{T}^*.$$

Dynamic equations and GODEs

Let $X \subset \mathbb{R}^n$ and assume that $f : X \times \mathbb{T} \to \mathbb{R}^n$ satisfies certain conditions. If $x : \mathbb{T} \to X$ is a solution of

$$x^{\Delta}(t) = f(x(t), t), \ x(t_0) = x_0,$$
 (1)

Averaging theorems

then $x^* : \mathbb{T}^* \to X$ is a solution of

$$\frac{dx}{d\tau} = DF(x,t), \quad x(t_0) = x_0, \tag{2}$$

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ◆日 ●

where $F(x, t) = \int_{t_0}^{t} f(x, s^*) dg(s)$ and $g(s) = s^*$. Conversely, every solution $y : \mathbb{T}^* \to X$ of (2) has the form $y = x^*$, where $x : \mathbb{T} \to X$ is a solution of (1). Let \mathbb{T} be a *T*-periodic time scale ($t \in \mathbb{T}$ implies $t + T \in \mathbb{T}$ and $\mu(t) = \mu(t + T)$) and *f* a *T*-periodic function in *t*. Consider the initial-value problems

$$\begin{aligned} x^{\Delta}(t) &= \varepsilon f(t, x(t)) + \varepsilon^2 g(t, x(t), \varepsilon), \ x(t_0) &= x_0, \\ y'(t) &= \varepsilon f^0(y(t)), \ y(t_0) &= x_0, \end{aligned}$$

where $f^{0}(y) = \frac{1}{\tau} \int_{t_{0}}^{t_{0}+T} f(t, y) \Delta t$.

Periodic averaging on time scales

Then (under certain assumptions on *f* and *g*), given a d > 0, there is a c > 0 such that

$$\|\mathbf{x}(t) - \mathbf{y}(t)\| \leq c\varepsilon$$

for every $\varepsilon \in (0, \varepsilon_0]$ and $t \in [t_0, t_0 + d/\varepsilon]_{\mathbb{T}}$.

◆ロ → ◆ □ → ◆ □ → ◆ □ → ● ◆ ○ への

dic solutions
\mathbb{T} , $p_0 \in \mathbb{R}^n$, $r > 0$, $\varepsilon_0 > 0$. $p_0) \rightarrow \mathbb{R}^n$ and p_1^n , which are <i>T</i> -periodic in additional conditions.
invertible, then there exist ntinuous function $= p_0$ and for every
$(t), \varepsilon), \ x(t_0) = p(\varepsilon)$ \mathbb{R}^n , which is <i>T</i> -periodic
$\in [t_0,\infty)_{\mathbb{T}}.$
 ▲□▶ ▲□▶
ing theorems
ing theorems Scales
and $\lim_{t o \infty} \mu(t)/t = 0,$ consider /alue problems
Scales and $\lim_{t\to\infty} \mu(t)/t = 0$, consider value problems $x(t_0) = x_0$, $y(t_0) = x_0$, $^+T f(y, s) \Delta s$. f), given a $d > 0$ and $\leq \delta$
$\frac{1}{2}$

Open questions	References
 The condition lim_{t→∞} μ(t)/t = 0 guarantees that the assumptions of the GODE averaging theorem are satisfied. Is it possible to weaken or relax the condition on μ? Does there exist a nonperiodic averaging theorem where the averaged equation is a dynamic equation defined on the same time scale as the original equation? 	 J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (2nd edition), Springer, New York, 2007. Š. Schwabik, Generalized Ordinary Differential Equations, World Scientific, Singapore, 1992. A. Slavík, Dynamic equations on time scales and generalized ordinary differential equations, J. Math. Anal. Appl. 385 (2012), 534–550. J. G. Mesquita, A. Slavík, Periodic averaging theorems for various types of equations, J. Math. Anal. Appl. 387 (2012), 862–877. A. Slavík, Averaging dynamic equations on time scales, J. Math. Anal. Appl. 388 (2012), 996–1012.
▲ロト 4 湿 ト 4 茎 ト 注 のへで Antonin Slavík Averaging theorems	ィロトィラトィミトィミト ミーのへ Antonín Slavík Averaging theorems