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Historical background

Lagrange and celestial mechanics (18th century)
Reduction of

x ′(t) = F (t , x(t), ε), x(t0) = x0

(where F is T -periodic in the first variable) to the standard
form

x ′(t) = εf (t , x(t)) + O(ε2), x(t0) = x0

Expand f (t , x) into Fourier series with respect to t and
neglect all time-dependent terms, keeping only

f 0(x) =
1
T

∫ T

0
f (t , x) dt

Averaged equation: y ′(t) = εf 0(y(t)), y(t0) = x0

20th century: proofs of asymptotic validity, nonperiodic
averaging
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Classical averaging theorems

Solutions of the initial-value problem

x ′(t) = εf (t , x(t)) + ε2g(t , x(t), ε), x(t0) = x0,

can be approximated by solutions of the averaged equation

y ′(t) = εf 0(y(t)), y(t0) = x0,

where

f 0(y) =
1
T

∫ t0+T

t0
f (t , y) dt

if f is a T -periodic function in the first variable and

f 0(y) = lim
T→∞

1
T

∫ t0+T

t0
f (t , y) dt

otherwise.
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Quality of the approximation

Periodic case:
Given a d > 0, there is an ε0 > 0 and a c > 0 such that

‖x(t)− y(t)‖ ≤ cε

for every ε ∈ (0, ε0] and t ∈ [t0, t0 + d/ε].

Nonperiodic case:
Given a d > 0 and a δ > 0, there is an ε0 > 0 such that

‖x(t)− y(t)‖ ≤ δ

for every ε ∈ (0, ε0] and t ∈ [t0, t0 + d/ε].
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Averaging theorems for other types of equations

Ordinary differential equations with impulses
Retarded functional differential equations
Dynamic equations on time scales
Generalized ordinary differenital equations
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Generalized ordinary differential equations

Interval I ⊆ R
F : Rn × I → Rn

A function x : I → Rn is called a solution of the generalized
ordinary differential equation

dx
dτ

= DF (x , t), x(a) = x0

whenever

x(s) = x0 +

∫ s

a
DF (x(τ), t)

for every s ∈ I, where the integral on the right-hand side is the
Kurzweil integral.
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Kurzweil integration

A function F : [a,b]× [a,b]→ Rn is called Kurzweil integrable
over [a,b] if there exists a vector I ∈ Rn such that given an
ε > 0, there is a function δ : [a,b]→ R+ such that

∥∥∥∥∥∥

k∑

j=1

(
F (τj , αj)− F (τj , αj−1)

)
− I

∥∥∥∥∥∥
< ε

for every partition with division points

a = α0 ≤ α1 ≤ · · · ≤ αk−1 ≤ αk = b

and tags τj ∈ [αj−1, αj ] such that

[αj−1, αj ] ⊂ (τj − δ(tj), τj + δ(τj)), j ∈ {1, . . . , k}.

Notation: I =
∫ b

a DF (τ, t).
F (τ, t) = f (τ)t ⇒ Henstock-Kurzweil integral

∫ b
a f (s) ds

F (τ, t) = f (τ)g(t)⇒ Kurzweil-Stieltjes integral
∫ b

a f (s) dg(s)
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Classical ODEs vs. GODEs

An ordinary differential equation

x ′(t) = f (x(t), t), x(t0) = x0

is equivalent to the generalized ordinary differential equation

dx
dτ

= DF (x , t), x(t0) = x0,

where F (x , t) =
∫ t

t0
f (x , s) ds.
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Periodic averaging for GODEs

B ⊂ Rn, Ω = B × [0,∞), ε0 > 0, L > 0, F : Ω→ Rn,
G : Ω× (0, ε0]→ Rn.
Assume there exists a T > 0 and a function M : B → Rn such
that F (x , t + T )− F (x , t) = M(x) for every x ∈ B and
t ∈ [0,∞). Let

F0(x) =
F (x ,T )

T
, x ∈ B.

Then, under certain assumption on F , G, and M, the solutions
of

dx
dτ

= D
[
εF (x , t) + ε2G(x , t , ε)

]
, x(0) = x0,

can be approximated by solutions of

y ′(t) = εF0(y(t)), y(0) = x0,

i.e. there exists a constant K > 0 such that

‖x(t)− y(t)‖ ≤ K ε, ε ∈ (0, ε0], t ∈ [0,L/ε] .
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Extension of time scale functions

Given a real number t ≤ supT, let

t∗ = inf{s ∈ T; s ≥ t}.
Further, let

T∗ =

{
(−∞, supT] if supT <∞,
(−∞,∞) otherwise.

Given a function x : T→ Rn, define x∗ : T∗ → Rn by

x∗(t) = x(t∗), t ∈ T∗.
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Dynamic equations and GODEs

Let X ⊂ Rn and assume that f : X × T→ Rn satisfies certain
conditions. If x : T→ X is a solution of

x∆(t) = f (x(t), t), x(t0) = x0, (1)

then x∗ : T∗ → X is a solution of

dx
dτ

= DF (x , t), x(t0) = x0, (2)

where F (x , t) =
∫ t

t0
f (x , s∗) dg(s) and g(s) = s∗.

Conversely, every solution y : T∗ → X of (2) has the form
y = x∗, where x : T→ X is a solution of (1).
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Periodic averaging on time scales

Let T be a T -periodic time scale (t ∈ T implies t + T ∈ T and
µ(t) = µ(t + T )) and f a T -periodic function in t . Consider the
initial-value problems

x∆(t) = εf (t , x(t)) + ε2g(t , x(t), ε), x(t0) = x0,

y ′(t) = εf 0(y(t)), y(t0) = x0,

where f 0(y) = 1
T

∫ t0+T
t0

f (t , y) ∆t .

Then (under certain assumptions on f and g), given a d > 0,
there is a c > 0 such that

‖x(t)− y(t)‖ ≤ cε

for every ε ∈ (0, ε0] and t ∈ [t0, t0 + d/ε]T.
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Periodic averaging on time scales (2nd version)

Let T be a T -periodic time scale (t ∈ T implies t + T ∈ T and
µ(t) = µ(t + T )) and f a T -periodic function in t . Consider the
initial-value problems

x∆(t) = εf (t , x(t)) + ε2g(t , x(t), ε), x(t0) = x0,

y∆(t) = εf 0(y(t)), y(t0) = x0,

where f 0(y) = 1
T

∫ t0+T
t0

f (t , y) ∆t .

Then (under certain assumptions on f and g), given a d > 0,
there is a c > 0 such that

‖x(t)− y(t)‖ ≤ cε

for every ε ∈ (0, ε0] and t ∈ [t0, t0 + d/ε]T.
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Application: Existence of periodic solutions

Let T be a T -periodic time scale, t0 ∈ T, p0 ∈ Rn, r > 0, ε0 > 0.
Consider functions f : [t0,∞)T × Br (p0)→ Rn and
g : [t0,∞)T × Br (p0)× (−ε0, ε0)→ Rn, which are T -periodic in
the first argument and satisfy certain additional conditions.

If f 0(p0) = 0 and the matrix ∂f 0

∂x (p0) is invertible, then there exist
numbers ε1 ∈ (0, ε0), C > 0 and a continuous function
p : [−ε1, ε1]→ Br (p0) such that p(0) = p0 and for every
ε ∈ [−ε1, ε1], the initial-value problem

x∆(t) = εf (t , x(t)) + ε2g(t , x(t), ε), x(t0) = p(ε)

has a unique solution x : [t0,∞)T → Rn, which is T -periodic
and satisfies

‖x(t)− p0‖ ≤ C|ε|, t ∈ [t0,∞)T.
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Example

Consider the time scale T = Z and the difference equation

∆x(t) = ε(1− x(t) + (−1)t ), t ∈ {0,1,2, . . .},

whose right-hand side is 2-periodic in t .
The corresponding averaged equation is ∆y(t) = εf 0(y(t)),
where f 0(x) = 1− x .
Equilibrium solution: y(t) = p0 = 1, ∂f 0

∂x (p0) = −1
The previous theorem guarantees that the original difference
equation has a 2-periodic solution near p0 whenever |ε| is
sufficiently small.
Can be found analytically:

x(t) = 1 + (−1)tε/(ε− 2)

For ε ∈ [−1,1], we have |x(t)− 1| ≤ |ε| for every
t ∈ {0,1,2, . . .}.
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Nonperiodic averaging on time scales

Let T be a time scale with supT =∞ and limt→∞ µ(t)/t = 0,
c > 0, and Bc = {x ∈ Rn; ‖x‖ < c}. Consider
f : Bc × [t0,∞)T → Rn and the initial-value problems

x∆(t) = εf (t , x(t)), x(t0) = x0,

y ′(t) = εf 0(y(t)), y(t0) = x0,

where

f 0(y) = lim
T→∞, T∈T

1
T

∫ t0+T

t0
f (y , s) ∆s.

Then (under certain assumptions on f ), given a d > 0 and
a δ > 0, there is an ε0 > 0 such that

‖x(t)− y(t)‖ ≤ δ

for every ε ∈ (0, ε0] and t ∈ [t0, t0 + d/ε]T.
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Open questions

The condition limt→∞ µ(t)/t = 0 guarantees that the
assumptions of the GODE averaging theorem are satisfied.
Is it possible to weaken or relax the condition on µ?
Does there exist a nonperiodic averaging theorem where
the averaged equation is a dynamic equation defined on
the same time scale as the original equation?
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