Modified Lotka-Volterra maps and their interior periodic points

Peter Maličký Matej Bel University, Banská Bystrica

ICDEA 2012 Barcelona 27th July 2012

In 1993 A. N. Sharkovskiĭ formulated some problems concerning the properties of the plain map $[x, y] \mapsto [(y - 2)^2, xy]$. One of the questions was about interior periodic points.

In 1993 A. N. Sharkovskiĭ formulated some problems concerning the properties of the plain map $[x, y] \mapsto [(y - 2)^2, xy]$. One of the questions was about interior periodic points. This map leaves the plane triangle $\Delta = \{ [x, y] : 0 \le x, 0 \le y, x + y \le 4 \}$ invariant.

In 1993 A. N. Sharkovskii formulated some problems concerning the properties of the plain map $[x, y] \mapsto [(y-2)^2, xy]$. One of the questions was about interior periodic points. This map leaves the plane triangle $\Delta = \{ [x, y] : 0 \le x, 0 \le y, x + y \le 4 \}$ invariant. In 2006 Balibrea, García Guirao, Lampart and Llibre studied a conjugate map

$$F: \Delta \to \Delta, [x, y] \mapsto [x(4 - x - y), xy]$$
.

In 1993 A. N. Sharkovskiĭ formulated some problems concerning the properties of the plain map $[x, y] \mapsto [(y - 2)^2, xy]$. One of the questions was about interior periodic points. This map leaves the plane triangle $\Delta = \{ [x, y] : 0 \le x, 0 \le y, x + y \le 4 \}$ invariant. In 2006 Balibrea, García Guirao, Lampart and Llibre studied a conjugate map

$$F: \Delta \to \Delta, [x, y] \mapsto [x(4 - x - y), xy]$$

They found an interior periodic point with period 4

In 1993 A. N. Sharkovskii formulated some problems concerning the properties of the plain map $[x, y] \mapsto [(y-2)^2, xy]$. One of the questions was about interior periodic points. This map leaves the plane triangle $\Delta = \{ [x, y] : 0 \le x, 0 \le y, x + y \le 4 \}$ invariant. In 2006 Balibrea, García Guirao, Lampart and Llibre studied a conjugate map

$$F: \Delta \rightarrow \Delta, [x, y] \mapsto [x(4 - x - y), xy]$$
.

They found an interior periodic point with period 4 and proved that there are no such points with period 2 and 3.

In 1993 A. N. Sharkovskii formulated some problems concerning the properties of the plain map $[x, y] \mapsto [(y-2)^2, xy]$. One of the questions was about interior periodic points. This map leaves the plane triangle $\Delta = \{ [x, y] : 0 \le x, 0 \le y, x + y \le 4 \}$ invariant. In 2006 Balibrea, García Guirao, Lampart and Llibre studied a conjugate map

$$F: \Delta \to \Delta, [x, y] \mapsto [x(4 - x - y), xy]$$
.

They found an interior periodic point with period 4 and proved that there are no such points with period 2 and 3. In 2012 we published a relation between lower and interior periodic points of the map F.

In 1993 A. N. Sharkovskii formulated some problems concerning the properties of the plain map $[x, y] \mapsto [(y-2)^2, xy]$. One of the questions was about interior periodic points. This map leaves the plane triangle $\Delta = \{ [x, y] : 0 \le x, 0 \le y, x + y \le 4 \}$ invariant. In 2006 Balibrea, García Guirao, Lampart and Llibre studied a conjugate map

$$F: \Delta \to \Delta, [x, y] \mapsto [x(4 - x - y), xy]$$
.

They found an interior periodic point with period 4 and proved that there are no such points with period 2 and 3. In 2012 we published a relation between lower and interior periodic points of the map F. We study the same problem for the modification

$$G: \Delta \to \Delta, [x, y] \mapsto [x(4 - x - \varphi(x, y)), x\varphi(x, y)]$$
.

In 1993 A. N. Sharkovskii formulated some problems concerning the properties of the plain map $[x, y] \mapsto [(y-2)^2, xy]$. One of the questions was about interior periodic points. This map leaves the plane triangle $\Delta = \{ [x, y] : 0 \le x, 0 \le y, x + y \le 4 \}$ invariant. In 2006 Balibrea, García Guirao, Lampart and Llibre studied a conjugate map

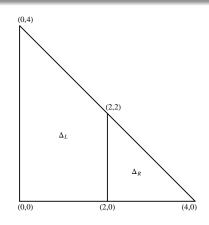
$$F: \Delta \to \Delta, [x, y] \mapsto [x(4 - x - y), xy]$$
.

They found an interior periodic point with period 4 and proved that there are no such points with period 2 and 3. In 2012 we published a relation between lower and interior periodic points of the map F. We study the same problem for the modification

$$G: \Delta \rightarrow \Delta, [x, y] \mapsto [x(4 - x - \varphi(x, y)), x\varphi(x, y)]$$
.

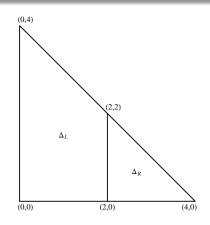
Theorem (Maličký 2012)

Let P be a lower saddle fixed point of the map F^n . Then there is an interior fixed point Q of F^n with the same period and itinerary, where the itinerary is considered with respect to the sets Δ_L and Δ_R .



Theorem (Maličký 2012)

Let P be a lower saddle fixed point of the map F^n . Then there is an interior fixed point Q of F^n with the same period and itinerary, where the itinerary is considered with respect to the sets Δ_L and Δ_R .



Itinerary

For a fixed point P of the map F^n it is sufficient to consider its itinerary W as a sequence $(w_i)_{i=0}^{n-1}$ defined by

$$w_i = \begin{cases} L & \text{if } F^i(P) \in \Delta_L , \\ R & \text{if } F^i(P) \in \Delta_R . \end{cases}$$

Such a sequence we will write in a shorten form

$$W = L^{j_1} R^{k_1} \cdots L^{j_m} R^{k_m} .$$

Itinerary

For a fixed point P of the map F^n it is sufficient to consider its itinerary W as a sequence $(w_i)_{i=0}^{n-1}$ defined by

$$w_i = egin{cases} L & ext{if } F^i(P) \in \Delta_L \ R & ext{if } F^i(P) \in \Delta_R \ . \end{cases}$$

Such a sequence we will write in a shorten form

$$W = L^{j_1} R^{k_1} \cdots L^{j_m} R^{k_m}$$

It is natural to express the triangle Δ as the union

$$\Delta = \Delta_L \cup \Delta_R \; ,$$

where

$$\Delta_L = \{ [x, y] \in \Delta : x \le 2 \} \text{ and} \\ \Delta_R = \{ [x, y] \in \Delta : x \ge 2 \} ,$$

It is natural to express the triangle Δ as the union

$$\Delta = \Delta_L \cup \Delta_R \; ,$$

where

$$\Delta_L = \{ [x, y] \in \Delta : x \le 2 \} \text{ and} \\ \Delta_R = \{ [x, y] \in \Delta : x \ge 2 \} ,$$

because

$$F(\Delta_L) = \Delta = F(\Delta_R)$$
.

It is natural to express the triangle Δ as the union

$$\Delta = \Delta_L \cup \Delta_R \; ,$$

where

$$\Delta_L = \{ [x, y] \in \Delta : x \le 2 \} \text{ and} \\ \Delta_R = \{ [x, y] \in \Delta : x \ge 2 \} ,$$

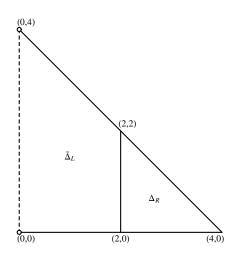
because

$$F(\Delta_L) = \Delta = F(\Delta_R)$$
.

Notation

Put also

$$egin{array}{rcl} \widetilde{\Delta}_L &=& \{\, [x,\,y]\in\Delta: 0< x\leq 2\} \ ext{and} \ \widetilde{\Delta} &=& \Delta\setminus\{[0,0]\}. \end{array}$$



Inverse maps

The map F is not invertible, but F restricted to $\widetilde{\Delta}_L$ and Δ_R is. The inverse maps of these restrictions are given by

$$\begin{split} F_L^{-1} &: \widetilde{\Delta} \to \widetilde{\Delta}_L \,, \quad [x, \, y] \mapsto \left[2 - \sqrt{4 - x - y}, \, \frac{y}{2 - \sqrt{4 - x - y}} \right] \\ F_R^{-1} &: \Delta \to \Delta_R, \quad [x, \, y] \mapsto \left[2 + \sqrt{4 - x - y}, \, \frac{y}{2 + \sqrt{4 - x - y}} \right] \end{split}$$

Note that $F : [x,0] \mapsto [f(x),0]$, where $f : \langle 0,4 \rangle \rightarrow \langle 0,4 \rangle$, f(x) = x(4-x) is the logistic map, which is conjugate with the tent map $T : \langle 0,1 \rangle \rightarrow \langle 0,1 \rangle$, T(t) = 1 - |1 - 2t|

Note that $F : [x, 0] \mapsto [f(x), 0]$, where $f : \langle 0, 4 \rangle \to \langle 0, 4 \rangle$, f(x) = x(4 - x) is the logistic map, which is conjugate with the tent map $T : \langle 0, 1 \rangle \to \langle 0, 1 \rangle$, T(t) = 1 - |1 - 2t| via the conjugation $h : \langle 0, 1 \rangle \to \langle 0, 4 \rangle$, $h(t) = 4 \sin^2(\pi t/2)$.

Note that $F : [x, 0] \mapsto [f(x), 0]$, where $f : \langle 0, 4 \rangle \to \langle 0, 4 \rangle$, f(x) = x(4 - x) is the logistic map, which is conjugate with the tent map $T : \langle 0, 1 \rangle \to \langle 0, 1 \rangle$, T(t) = 1 - |1 - 2t| via the conjugation $h : \langle 0, 1 \rangle \to \langle 0, 4 \rangle$, $h(t) = 4 \sin^2(\pi t/2)$. Since any fixed point of the map T^n is of the form $2k/(2^n \pm 1)$,

Note that $F : [x, 0] \mapsto [f(x), 0]$, where $f : \langle 0, 4 \rangle \to \langle 0, 4 \rangle$, f(x) = x(4 - x) is the logistic map, which is conjugate with the tent map $T : \langle 0, 1 \rangle \to \langle 0, 1 \rangle$, T(t) = 1 - |1 - 2t| via the conjugation $h : \langle 0, 1 \rangle \to \langle 0, 4 \rangle$, $h(t) = 4 \sin^2(\pi t/2)$. Since any fixed point of the map T^n is of the form $2k/(2^n \pm 1)$, any lower fixed point of the map F^n is of the form $\left[4 \sin^2 \frac{k\pi}{2^n \pm 1}, 0\right]$,

Note that $F : [x, 0] \mapsto [f(x), 0]$, where $f : \langle 0, 4 \rangle \to \langle 0, 4 \rangle$, f(x) = x(4 - x) is the logistic map, which is conjugate with the tent map $T : \langle 0, 1 \rangle \to \langle 0, 1 \rangle$, T(t) = 1 - |1 - 2t| via the conjugation $h : \langle 0, 1 \rangle \to \langle 0, 4 \rangle$, $h(t) = 4 \sin^2(\pi t/2)$. Since any fixed point of the map T^n is of the form $2k/(2^n \pm 1)$, any lower fixed point of the map F^n is of the form $\left[4 \sin^2 \frac{k\pi}{2^n \pm 1}, 0\right]$, where *n* and *k* are integers such that 0 < n and $0 \le 2k < 2^n \pm 1$.

Note that $F : [x, 0] \mapsto [f(x), 0]$, where $f : \langle 0, 4 \rangle \to \langle 0, 4 \rangle$, f(x) = x(4 - x) is the logistic map, which is conjugate with the tent map $T : \langle 0, 1 \rangle \to \langle 0, 1 \rangle$, T(t) = 1 - |1 - 2t| via the conjugation $h : \langle 0, 1 \rangle \to \langle 0, 4 \rangle$, $h(t) = 4 \sin^2(\pi t/2)$. Since any fixed point of the map T^n is of the form $2k/(2^n \pm 1)$, any lower fixed point of the map F^n is of the form $\left[4 \sin^2 \frac{k\pi}{2^n \pm 1}, 0\right]$, where *n* and *k* are integers such that 0 < n and $0 \le 2k < 2^n \pm 1$.

Jacobi matrix

Let $P = [x_0, 0] \in \Delta$ be a fixed point of the map F^n . In this case $P = \left[4\sin^2 \frac{k\pi}{2^n \pm 1}, 0\right]$. Then the Jacobi matrix of the map F^n at the point P has a form

$$\left(\begin{array}{cc}\lambda_1 & \mu\\ 0 & \lambda_2\end{array}\right) = \left(\begin{array}{cc}\mp 2^n & \mu\\ & n-1\\ 0 & \prod\limits_{i=0}^{n-1} x_i\end{array}\right) ,$$

where

 $[x_i,0]=F^i(P) \ .$

Jacobi matrix

Let $P = [x_0, 0] \in \Delta$ be a fixed point of the map F^n . In this case $P = \left[4\sin^2 \frac{k\pi}{2^n \pm 1}, 0\right]$. Then the Jacobi matrix of the map F^n at the point P has a form

$$\left(\begin{array}{cc}\lambda_1 & \mu\\ 0 & \lambda_2\end{array}\right) = \left(\begin{array}{cc}\mp 2^n & \mu\\ & n-1\\ 0 & \prod\limits_{i=0}^{n-1} x_i\end{array}\right) ,$$

where

$$[x_i,0]=F^i(P).$$

Formula for λ_2

Since

$$x_i = 4\sin^2\frac{2^ik\pi}{2^n\pm 1} ,$$

we have

$$\lambda_2 = \prod_{i=0}^{n-1} 4\sin^2 \frac{2^i k\pi}{2^n \pm 1} \; .$$

Formula for λ_2

Since

$$x_i = 4\sin^2\frac{2^ik\pi}{2^n\pm 1} ,$$

we have

$$\lambda_2 = \prod_{i=0}^{n-1} 4\sin^2 \frac{2^i k \pi}{2^n \pm 1} \; .$$

For λ_2 we have the possibilities

Saddle point

For λ_2 we have the possibilities

Saddle point

 $0\leq\lambda_2<1$,

For λ_2 we have the possibilities

Saddle point

 $0 \le \lambda_2 < 1$, e.g. $x_0 = 4 \sin^2 \frac{\pi}{17}$

For λ_2 we have the possibilities

Saddle point

 $0 \le \lambda_2 < 1$, e.g. $x_0 = 4 \sin^2 \frac{\pi}{17}$

Nonhyperbolic point

For λ_2 we have the possibilities

Saddle point

$$0 \le \lambda_2 < 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{17}$

Nonhyperbolic point

$$\lambda_2 = 1,$$

For λ_2 we have the possibilities

Saddle point

$$0 \le \lambda_2 < 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{17}$

Nonhyperbolic point

$$\lambda_2 = 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{15}$

For λ_2 we have the possibilities

Saddle point

$$0 \le \lambda_2 < 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{17}$

Nonhyperbolic point

$$\lambda_2 = 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{15}$

Repulsive point

For λ_2 we have the possibilities

Saddle point

$$0 \le \lambda_2 < 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{17}$

Nonhyperbolic point

$$\lambda_2 = 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{15}$

Repulsive point

$$1 < \lambda_2$$
 ,

For λ_2 we have the possibilities

Saddle point

$$0 \le \lambda_2 < 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{17}$

Nonhyperbolic point

$$\lambda_2 = 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{15}$

Repulsive point

$$1 < \lambda_2$$
, e.g. $x_0 = 4 \sin^2 \frac{3\pi}{17}$

For λ_2 we have the possibilities

Saddle point

$$0 \le \lambda_2 < 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{17}$

Nonhyperbolic point

$$\lambda_2 = 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{15}$

Repulsive point

$$1 < \lambda_2$$
, e.g. $x_0 = 4 \sin^2 rac{3\pi}{17}$

Remark

All above points $[x_0, 0]$ have period 4.

For λ_2 we have the possibilities

Saddle point

$$0 \le \lambda_2 < 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{17}$

Nonhyperbolic point

$$\lambda_2 = 1$$
, e.g. $x_0 = 4 \sin^2 \frac{\pi}{15}$

Repulsive point

$$1 < \lambda_2$$
, e.g. $x_0 = 4 \sin^2 rac{3\pi}{17}$

Remark

All above points $[x_0, 0]$ have period 4.

Saddle point

Lower periodic points with period *n* and $0 < \lambda_2 < 1$ appear for all $n \ge 4$.

Saddle point

Lower periodic points with period *n* and $0 < \lambda_2 < 1$ appear for all $n \ge 4$.

Nonhyperbolic point

Saddle point

Lower periodic points with period *n* and $0 < \lambda_2 < 1$ appear for all $n \ge 4$.

Nonhyperbolic point

Lower periodic points with period n and $\lambda_2 = 1$ appear for infinitely many n, e.g. $n = 4 \cdot 3^i \cdot 5^j$, where $i \ge 0$, $j \ge 0$.

Saddle point

Lower periodic points with period *n* and $0 < \lambda_2 < 1$ appear for all $n \ge 4$.

Nonhyperbolic point

Lower periodic points with period *n* and $\lambda_2 = 1$ appear for infinitely many *n*, e.g. $n = 4 \cdot 3^i \cdot 5^j$, where $i \ge 0$, $j \ge 0$.

Repulsive point

Saddle point

Lower periodic points with period *n* and $0 < \lambda_2 < 1$ appear for all $n \ge 4$.

Nonhyperbolic point

Lower periodic points with period *n* and $\lambda_2 = 1$ appear for infinitely many *n*, e.g. $n = 4 \cdot 3^i \cdot 5^j$, where $i \ge 0$, $j \ge 0$.

Repulsive point

Lower periodic points with period *n* and $1 < \lambda_2$ appear for all $n \ge 1$.

Saddle point

Lower periodic points with period *n* and $0 < \lambda_2 < 1$ appear for all $n \ge 4$.

Nonhyperbolic point

Lower periodic points with period *n* and $\lambda_2 = 1$ appear for infinitely many *n*, e.g. $n = 4 \cdot 3^i \cdot 5^j$, where $i \ge 0$, $j \ge 0$.

Repulsive point

Lower periodic points with period *n* and $1 < \lambda_2$ appear for all $n \ge 1$.

Main result

Theorem (Maličký 2012)

Let P be a lower saddle fixed point of the map F^n . Then there is an interior fixed point Q of F^n with the same period and itinerary.

The proof is based on the Brouwer fixed point theorem.

Main result

Theorem (Maličký 2012)

Let P be a lower saddle fixed point of the map F^n . Then there is an interior fixed point Q of F^n with the same period and itinerary.

The proof is based on the Brouwer fixed point theorem. We have also proved that for some itineraries interior fixed points of F^n do not exist.

Main result

Theorem (Maličký 2012)

Let P be a lower saddle fixed point of the map F^n . Then there is an interior fixed point Q of F^n with the same period and itinerary.

The proof is based on the Brouwer fixed point theorem. We have also proved that for some itineraries interior fixed points of F^n do not exist.

Assume that for any $x \in (0, 4)$ we have an increasing homeomorphism φ_x of the interval $\langle 0, 4 - x \rangle$ onto itself. Moreover let the function $\varphi(x, y) = \varphi_x(y)$ be continuous in the domain

$$\widehat{\Delta} = \{ [x, y] : 0 < x < 4 \ , 0 \le y \le 4 - x \} \ .$$

Assume that for any $x \in (0, 4)$ we have an increasing homeomorphism φ_x of the interval $\langle 0, 4-x \rangle$ onto itself. Moreover let the function $\varphi(x, y) = \varphi_x(y)$ be continuous in the domain

$$\widehat{\Delta} = \{ [x, y] : 0 < x < 4 \ , 0 \le y \le 4 - x \}$$

To obtain such above family φ_x , choose for 0 < x < 4 a family of increasing homeomorphisms ψ_x of the interval (0, 1) such that the function $\psi(x, y) = \psi_x(y)$ is continuous in $(0, 4) \times (0, 1)$ and put

$$\varphi_{x}(y) = (4-x)\psi_{x}\left(\frac{y}{4-x}\right)$$

To obtain such above family φ_x , choose for 0 < x < 4 a family of increasing homeomorphisms ψ_x of the interval (0, 1) such that the function $\psi(x, y) = \psi_x(y)$ is continuous in $(0, 4) \times (0, 1)$ and put

$$\varphi_{x}(y) = (4-x)\psi_{x}\left(\frac{y}{4-x}\right)$$

It is natural to put $\varphi_4(0)=0$. On the other hand we assume nothing about existence and properties of the limit

 $\lim_{x\to 0}\varphi_x(y).$

It is natural to put $\varphi_4(0)=0$. On the other hand we assume nothing about existence and properties of the limit

 $\lim_{x\to 0}\varphi_x(y).$

Let
$$G : \Delta \to \Delta$$
 be defined by

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 0, \\ [x(4-x-\varphi_x(y)), x\varphi_x(y)] & \text{otherwise} \end{cases}.$$

Then G is called a modified Lotka–Volterra map.

Let
$$G: \Delta \to \Delta$$
 be defined by

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 0, \\ [x(4-x-\varphi_x(y)), x\varphi_x(y)] & \text{otherwise} \end{cases}.$$

Then G is called a modified Lotka–Volterra map.

All such modifications have properties

• G is continuous on Δ

All such modifications have properties

- G is continuous on Δ
- $G(\Delta_L) = \Delta = G(\Delta_R)$

All such modifications have properties

- G is continuous on Δ
- $G(\Delta_L) = \Delta = G(\Delta_R)$
- *G* restricted to $\widetilde{\Delta}_L$ and Δ_R is invertible

All such modifications have properties

- G is continuous on Δ
- $G(\Delta_L) = \Delta = G(\Delta_R)$
- *G* restricted to $\widetilde{\Delta}_L$ and Δ_R is invertible
- The inverse maps of these restrictions are given by

$$\begin{split} & G_L^{-1}: \widetilde{\Delta} \to \widetilde{\Delta}_L \,, \\ & [x, \, y] \mapsto \left[2 - \sqrt{4 - x - y}, \, \varphi_{2-\sqrt{4 - x - y}}^{-1} \left(\frac{y}{2 - \sqrt{4 - x - y}} \right) \right] \\ & G_R^{-1}: \Delta \to \Delta_R, \\ & [x, \, y] \mapsto \left[2 + \sqrt{4 - x - y}, \, \varphi_{2+\sqrt{4 - x - y}}^{-1} \left(\frac{y}{2 + \sqrt{4 - x - y}} \right) \right] \end{split}$$

All such modifications have properties

• G is continuous on Δ

•
$$G(\Delta_L) = \Delta = G(\Delta_R)$$

- G restricted to $\widetilde{\Delta}_L$ and Δ_R is invertible
- The inverse maps of these restrictions are given by

$$\begin{split} G_L^{-1} &: \widetilde{\Delta} \to \widetilde{\Delta}_L \,, \\ [x, y] &\mapsto \left[2 - \sqrt{4 - x - y}, \, \varphi_{2-\sqrt{4 - x - y}}^{-1} \left(\frac{y}{2 - \sqrt{4 - x - y}} \right) \right] \\ G_R^{-1} &: \Delta \to \Delta_R, \\ [x, y] &\mapsto \left[2 + \sqrt{4 - x - y}, \, \varphi_{2+\sqrt{4 - x - y}}^{-1} \left(\frac{y}{2 + \sqrt{4 - x - y}} \right) \right] \end{split}$$

• G restricted to the lower side is a logistic map.

All such modifications have properties

• G is continuous on Δ

•
$$G(\Delta_L) = \Delta = G(\Delta_R)$$

- G restricted to $\widetilde{\Delta}_L$ and Δ_R is invertible
- The inverse maps of these restrictions are given by

$$\begin{split} G_L^{-1} &: \widetilde{\Delta} \to \widetilde{\Delta}_L \,, \\ [x, y] &\mapsto \left[2 - \sqrt{4 - x - y}, \, \varphi_{2-\sqrt{4 - x - y}}^{-1} \left(\frac{y}{2 - \sqrt{4 - x - y}} \right) \right] \\ G_R^{-1} &: \Delta \to \Delta_R, \\ [x, y] &\mapsto \left[2 + \sqrt{4 - x - y}, \, \varphi_{2+\sqrt{4 - x - y}}^{-1} \left(\frac{y}{2 + \sqrt{4 - x - y}} \right) \right] \end{split}$$

• G restricted to the lower side is a logistic map.

Repulsive and saddle points fixed points

Definition

Let $G^n[x, y] = [g_n(x, y), h_n(x, y)]$ and $P = [x_0, 0]$ be a lower fixed point of the map G^n . The point P is called a repulsive (respectively saddle) point if there is $\delta > 0$ such that

 $h_n(x,y) > y$ (respectively $h_n(x,y) < y$)

for all $[x, y] \in (x_0 - \delta, x_0 + \delta) \times (0, \delta)$.

Repulsive and saddle points fixed points

Definition

Let $G^n[x, y] = [g_n(x, y), h_n(x, y)]$ and $P = [x_0, 0]$ be a lower fixed point of the map G^n . The point P is called a repulsive (respectively saddle) point if there is $\delta > 0$ such that

 $h_n(x,y) > y$ (respectively $h_n(x,y) < y$)

for all $[x, y] \in (x_0 - \delta, x_0 + \delta) \times (0, \delta)$.

If the above inequalities can be replaced by

 $h_n(x,y) > ky$ (respectively $h_n(x,y) < ky$)

with k > 1 (respectively 0 < k < 1) than P is called strictly repulsive (respectively strict saddle) point.

Repulsive and saddle points fixed points

Definition

Let $G^n[x, y] = [g_n(x, y), h_n(x, y)]$ and $P = [x_0, 0]$ be a lower fixed point of the map G^n . The point P is called a repulsive (respectively saddle) point if there is $\delta > 0$ such that

 $h_n(x,y) > y$ (respectively $h_n(x,y) < y$)

for all $[x, y] \in (x_0 - \delta, x_0 + \delta) \times (0, \delta)$. If the above inequalities can be replaced by

 $h_n(x,y) > ky$ (respectively $h_n(x,y) < ky$)

with k > 1 (respectively 0 < k < 1) than P is called strictly repulsive (respectively strict saddle) point.

Main result for modified Lotka–Volterra maps

Theorem

Let $P \neq [0,0]$ be a lower saddle fixed point of the map G^n . Then there is an interior fixed point Q of G^n with the same period and itinerary.

Formula for λ_2

We have $\widetilde{\lambda}_2=\prod_{i=0}^{n-1}x_i\varphi_{x_i}'(0)=\prod_{i=0}^{n-1}x_i\psi_{x_i}'(0)\;,$

or equivalently

$$\widetilde{\lambda}_2 = \prod_{i=0}^{n-1} x_i \frac{\partial \varphi}{\partial y}(x_i, 0) = \prod_{i=0}^{n-1} x_i \frac{\partial \psi}{\partial y}(x_i, 0) ,$$

where $\varphi(x, y) = \varphi_x(y)$ and

Formula for λ_2

We have

$$\widetilde{\lambda}_2 = \prod_{i=0}^{n-1} x_i \varphi'_{x_i}(0) = \prod_{i=0}^{n-1} x_i \psi'_{x_i}(0) ,$$

or equivalently

$$\widetilde{\lambda}_2 = \prod_{i=0}^{n-1} x_i \frac{\partial \varphi}{\partial y}(x_i, 0) = \prod_{i=0}^{n-1} x_i \frac{\partial \psi}{\partial y}(x_i, 0) ,$$

where $\varphi(x, y) = \varphi_x(y)$ and $\psi(x, y) = \psi_x(y)$.

Formula for λ_2

We have

$$\widetilde{\lambda}_2 = \prod_{i=0}^{n-1} x_i \varphi'_{x_i}(0) = \prod_{i=0}^{n-1} x_i \psi'_{x_i}(0) ,$$

or equivalently

$$\widetilde{\lambda}_2 = \prod_{i=0}^{n-1} x_i \frac{\partial \varphi}{\partial y}(x_i, 0) = \prod_{i=0}^{n-1} x_i \frac{\partial \psi}{\partial y}(x_i, 0) ,$$

where $\varphi(x, y) = \varphi_x(y)$ and $\psi(x, y) = \psi_x(y)$.

$$\varphi_{x}(y) = \frac{\sqrt{2y(4-x) + x^{2}(4-x)^{2}} - \sqrt{y(4-x) + x^{2}(4-x)^{2}}}{\sqrt{2+x^{2}} - \sqrt{1+x^{2}}}.$$

(i) Let
$$0 \le a \le 2$$
 and $\psi_x(y) = ay + (1-a)y^2$. Then we obtain
 $\varphi_x(y) = ay + \frac{(1-a)y^2}{4-x}$.
(ii) Let $\psi_x(y) = \frac{\sqrt{2y+x^2}-\sqrt{y+x^2}}{\sqrt{2+x^2}-\sqrt{1+x^2}}$. Then we obtain
 $\varphi_x(y) = \frac{\sqrt{2y(4-x)+x^2(4-x)^2}-\sqrt{y(4-x)+x^2(4-x)^2}}{\sqrt{2+x^2}-\sqrt{1+x^2}}$.

(iii) Let $\psi_x(y) = \sqrt{y}$. Then $\varphi_x(y) = \sqrt{(4-x)y}$.

(i) Let
$$0 \le a \le 2$$
 and $\psi_x(y) = ay + (1-a)y^2$. Then we obtain
 $\varphi_x(y) = ay + \frac{(1-a)y^2}{4-x}$.
(ii) Let $\psi_x(y) = \frac{\sqrt{2y+x^2} - \sqrt{y+x^2}}{\sqrt{2+x^2} - \sqrt{1+x^2}}$. Then we obtain
 $\varphi_x(y) = \frac{\sqrt{2y(4-x) + x^2(4-x)^2} - \sqrt{y(4-x) + x^2(4-x)^2}}{\sqrt{2+x^2} - \sqrt{1+x^2}}$.

(iii) Let
$$\psi_x(y) = \sqrt{y}$$
. Then $\varphi_x(y) = \sqrt{(4-x)y}$.
(iv) Let $\psi_x(y) = y^x$. Then $\varphi_x(y) = (4-x)\left(\frac{y}{4-x}\right)^x$.

(i) Let
$$0 \le a \le 2$$
 and $\psi_x(y) = ay + (1-a)y^2$. Then we obtain
 $\varphi_x(y) = ay + \frac{(1-a)y^2}{4-x}$.
(ii) Let $\psi_x(y) = \frac{\sqrt{2y+x^2}-\sqrt{y+x^2}}{\sqrt{2+x^2}-\sqrt{1+x^2}}$. Then we obtain
 $\varphi_x(y) = \frac{\sqrt{2y(4-x)+x^2(4-x)^2}-\sqrt{y(4-x)+x^2(4-x)^2}}{\sqrt{2+x^2}-\sqrt{1+x^2}}$

(iii) Let
$$\psi_x(y) = \sqrt{y}$$
. Then $\varphi_x(y) = \sqrt{(4-x)y}$.
(iv) Let $\psi_x(y) = y^x$. Then $\varphi_x(y) = (4-x)\left(\frac{y}{4-x}\right)^x$.

Lotka-Volterra map Modifications

Modification (i)

Let $0 \leq a \leq 2$ and $G : \Delta \rightarrow \Delta$ be defined by

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 4, \\ \left[x \left(4 - x - ay - \frac{(1-a)y^2}{4-x} \right), x \left(ay + \frac{(1-a)y^2}{4-x} \right) \right] & \text{otherwise} . \end{cases}$$

In this case

 $\widetilde{\lambda}_2 = a^n \lambda_2 \; .$

Lotka-Volterra map Modifications

Modification (i)

Let $0 \leq a \leq 2$ and $G : \Delta \rightarrow \Delta$ be defined by

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 4, \\ \left[x \left(4 - x - ay - \frac{(1-a)y^2}{4-x} \right), x \left(ay + \frac{(1-a)y^2}{4-x} \right) \right] & \text{otherwise} . \end{cases}$$

In this case

$$\widetilde{\lambda}_2 = a^n \lambda_2$$
.

 If 0 ≤ a < 1/3 then Gⁿ has interior fixed points for all itineraries, because all lower fixed points of Gⁿ are saddle fixed points. Lotka-Volterra map Modifications

Modification (i)

Let $0 \leq a \leq 2$ and $G : \Delta \rightarrow \Delta$ be defined by

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 4, \\ \left[x \left(4 - x - ay - \frac{(1-a)y^2}{4-x} \right), x \left(ay + \frac{(1-a)y^2}{4-x} \right) \right] & \text{otherwise} . \end{cases}$$

In this case

$$\widetilde{\lambda}_2 = a^n \lambda_2$$
 .

- If 0 ≤ a < 1/3 then Gⁿ has interior fixed points for all itineraries, because all lower fixed points of Gⁿ are saddle fixed points.
- If a = 1/3 then [3,0] is not lower saddle fixed point of G and there is no interior fixed point of G lying in Δ_R .

Let $0 \leq a \leq 2$ and $G : \Delta \rightarrow \Delta$ be defined by

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 4, \\ \left[x \left(4 - x - ay - \frac{(1-a)y^2}{4-x} \right), x \left(ay + \frac{(1-a)y^2}{4-x} \right) \right] & \text{otherwise} \end{cases}$$

In this case

$$\widetilde{\lambda}_2 = a^n \lambda_2$$
 .

 If 0 ≤ a < 1/3 then Gⁿ has interior fixed points for all itineraries, because all lower fixed points of Gⁿ are saddle fixed points.

 If a = 1/3 then [3,0] is not lower saddle fixed point of G and there is no interior fixed point of G lying in Δ_R. The other lower fixed points of Gⁿ are saddle points for any n > 1.

Let $0 \leq a \leq 2$ and $G : \Delta \rightarrow \Delta$ be defined by

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 4, \\ \left[x \left(4 - x - ay - \frac{(1-a)y^2}{4-x} \right), x \left(ay + \frac{(1-a)y^2}{4-x} \right) \right] & \text{otherwise} \end{cases}$$

In this case

$$\widetilde{\lambda}_2 = a^n \lambda_2$$
 .

- If 0 ≤ a < 1/3 then Gⁿ has interior fixed points for all itineraries, because all lower fixed points of Gⁿ are saddle fixed points.
- If a = 1/3 then [3,0] is not lower saddle fixed point of G and there is no interior fixed point of G lying in Δ_R. The other lower fixed points of Gⁿ are saddle points for any n > 1.

• If
$$0 \le a < \sqrt[4]{1+4/\sqrt{17}} \doteq 1.1847437...$$
 then
 $P = [4\sin^2 \frac{\pi}{17}, 0]$ is a saddle fixed point of G^4 .
• If $\sqrt[4]{1+4/\sqrt{17}} \le a \le 2$ then $P = [4\sin^2 \frac{\pi}{17}, 0]$ is not a saddle fixed point of G^4 .

Let

$$G[x,y] = [x(4-x-\varphi_x(y)),x\varphi_x(y)] ,$$

where

$$\varphi_x(y) = \frac{\sqrt{2y(4-x) + x^2(4-x)^2} - \sqrt{y(4-x) + x^2(4-x)^2}}{\sqrt{2+x^2} - \sqrt{1+x^2}}$$

Let

$$G[x,y] = [x(4-x-\varphi_x(y)), x\varphi_x(y)] ,$$

where

$$\varphi_x(y) = \frac{\sqrt{2y(4-x) + x^2(4-x)^2} - \sqrt{y(4-x) + x^2(4-x)^2}}{\sqrt{2+x^2} - \sqrt{1+x^2}}$$

or

$$\varphi_{\mathsf{X}}(\mathsf{y}) = \sqrt{(4-\mathsf{X})\mathsf{y}} \; .$$

Let

$$G[x,y] = [x(4-x-\varphi_x(y)), x\varphi_x(y)] ,$$

where

$$\varphi_x(y) = \frac{\sqrt{2y(4-x) + x^2(4-x)^2} - \sqrt{y(4-x) + x^2(4-x)^2}}{\sqrt{2+x^2} - \sqrt{1+x^2}}$$

or

$$\varphi_x(y) = \sqrt{(4-x)y}$$
.

Then all lower fixed points different from [0,0] of the map G^n are repulsive.

Let

$$G[x,y] = [x(4-x-\varphi_x(y)), x\varphi_x(y)] ,$$

where

$$\varphi_x(y) = \frac{\sqrt{2y(4-x) + x^2(4-x)^2} - \sqrt{y(4-x) + x^2(4-x)^2}}{\sqrt{2+x^2} - \sqrt{1+x^2}}$$

or

$$\varphi_x(y) = \sqrt{(4-x)y}$$
.

Then all lower fixed points different from [0,0] of the map G^n are repulsive. In the case (ii)

$$\widetilde{\lambda}_2 > \left(\frac{\sqrt{2}+1}{2}\right)^n > 1$$
.

Let

$$G[x,y] = [x(4-x-\varphi_x(y)), x\varphi_x(y)] ,$$

where

$$\varphi_x(y) = \frac{\sqrt{2y(4-x) + x^2(4-x)^2} - \sqrt{y(4-x) + x^2(4-x)^2}}{\sqrt{2+x^2} - \sqrt{1+x^2}}$$

or

$$\varphi_x(y) = \sqrt{(4-x)y}$$
.

Then all lower fixed points different from [0,0] of the map G^n are repulsive. In the case (ii)

$$\widetilde{\lambda}_2 > \left(rac{\sqrt{2}+1}{2}
ight)^n > 1 \; .$$

In the case (iii) the map G is not differentiable on the lower side.

Let

$$G[x,y] = [x(4-x-\varphi_x(y)), x\varphi_x(y)] ,$$

where

$$\varphi_x(y) = \frac{\sqrt{2y(4-x) + x^2(4-x)^2} - \sqrt{y(4-x) + x^2(4-x)^2}}{\sqrt{2+x^2} - \sqrt{1+x^2}}$$

or

$$\varphi_x(y) = \sqrt{(4-x)y}$$
.

Then all lower fixed points different from [0,0] of the map G^n are repulsive. In the case (ii)

$$\widetilde{\lambda}_2 > \left(rac{\sqrt{2}+1}{2}
ight)^n > 1$$
 .

In the case (iii) the map G is not differentiable on the lower side.

Let

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 0, \\ [x(4-x-\varphi_x(y)), x\varphi_x(y)] & \text{otherwise}, \end{cases}$$

where

$$\varphi_x(y) = (4-x)\left(\frac{y}{4-x}\right)^x$$

Then any lower fixed point of the map G^n which is strictly repulsive for F^n is a strict saddle fixed point for G^n

Let

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 0, \\ [x(4-x-\varphi_x(y)), x\varphi_x(y)] & \text{otherwise}, \end{cases}$$

where

$$\varphi_x(y) = (4-x)\left(\frac{y}{4-x}\right)^x$$

Then any lower fixed point of the map G^n which is strictly repulsive for F^n is a strict saddle fixed point for G^n and there exists an interior fixed point of G^n with the same period and itinerary.

٠

Let

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 0, \\ [x(4-x-\varphi_x(y)), x\varphi_x(y)] & \text{otherwise}, \end{cases}$$

where

$$\varphi_x(y) = (4-x)\left(\frac{y}{4-x}\right)^x$$

Then any lower fixed point of the map G^n which is strictly repulsive for F^n is a strict saddle fixed point for G^n and there exists an interior fixed point of G^n with the same period and itinerary. Any lower fixed point of the map G^n which is a strict saddle fixed point for F^n is strictly repulsive for G^n .

٠

Let

$$G[x,y] = \begin{cases} [0,0] & \text{if } x = 0, \\ [x(4-x-\varphi_x(y)), x\varphi_x(y)] & \text{otherwise}, \end{cases}$$

where

$$\varphi_x(y) = (4-x)\left(\frac{y}{4-x}\right)^x$$

Then any lower fixed point of the map G^n which is strictly repulsive for F^n is a strict saddle fixed point for G^n and there exists an interior fixed point of G^n with the same period and itinerary. Any lower fixed point of the map G^n which is a strict saddle fixed point for F^n is strictly repulsive for G^n .

٠

- F. Balibrea, J. L. G. Guirao, M. Lampart and J. Llibre. Dynamics of a Lotka-Volterra map. *Fund. Math.* 191 (2006), 265–279.
- J. L. G. Guirao and M. Lampart. Transitivity of a Lotka-Volterra map. *Discrete Contin. Dyn. Syst. Ser. B* 9 (2008), no. 1, 75–82 (electronic).
- P. Maličký. Interior periodic points of a LotkaVolterra map. J. Difference Equ. Appl. 18 (2012), no. 4, 553–567.
- A. N. Sharkovskii. Low dimensional dynamics. *Tagunsbericht* 20/1993, Proceedings of Mathematisches Forschunginstitut Oberwolfach 1993, 17.
- G. Swirszcz. On a certain map of the triangle. *Fund. Math.* **155** (1998), 45–57.