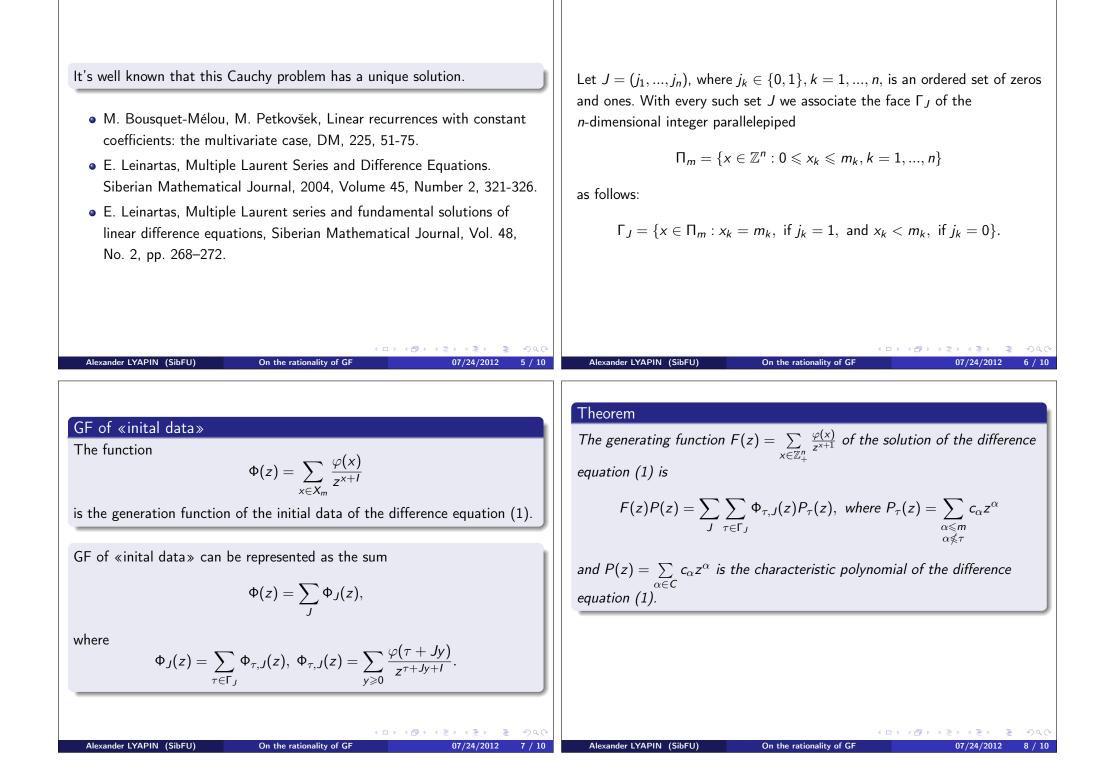
	Intoduction
ON THE RATIONALITY OF THE MULTIDIMENSIONAL RECURSIVE SERIES Alexander LYAPIN Siberian Federal University 07/24/2012	In this note we give a formula for the generating function of the solution of a multidimensional difference equation under the assumption that the generating function of the initial data is known. We also state the necessary and sufficient condition for rationality of the generating function. Richard Stanley in his book «Enumerative combinatorics» gives a hierarchy of «the most useful» classes of the generating functions (GF): <i>D</i> -finite \supset algebraic \supset rational.
 ・ ・ (アン・・マン・・マン・・マン・・マン・・マン・・マン・・マン・・マン・・マン・・	イロトイラトイラトイラト ラーラ つくつ Alexander LYAPIN (SibFU) On the rationality of GF 07/24/2012 2 / 10
De Moivre considered the recursive series as the power series $F(z) = f(0) + f(1)z + + f(k)z^k +$ with the constant coefficients $f(0), f(1),$ that make recursive sequence $\{f(n)\}, n = 0, 1, 2,$ satisfying the difference equation	Let $C = \{\alpha\}$, where $\alpha = (\alpha_1, \ldots, \alpha_n)$, be a finite subset of the positive octant \mathbb{Z}_+^n of the integer lattice \mathbb{Z}^n , $f : \mathbb{Z}_+^n \to \mathbb{C}$ and let $m = (m_1, m_2, \ldots, m_n) \in C$. Moreover for all $\alpha \in C$ the condition $\alpha_1 \leqslant m_1, \ldots, \alpha_n \leqslant m_n$ (*) be fulfilled.
$c_0 f(x + m) + c_1 f(x + m - 1) + \ldots + c_i f(x + m - i) + \ldots + c_m f(x) = 0,$ with some constant coefficients $c_i \in \mathbb{C}$, where $0 \le i \le m$.	The problem Cauchy The problem Cauchy is to find the solution $f(x)$ of the difference equation (we use a multidimensional notation)
In 1722 he proved that the power series $F(z)$ are rational functions.	$\sum_{\alpha \in C} c_{\alpha} f(x + \alpha) = 0, \qquad (1)$ which coincides with the some given function $\varphi : X_m \to \mathbb{C}$ on the set $X_m = \mathbb{Z}^n_+ \setminus (m + \mathbb{Z}^n_+)$ («initial data»).
Alexander LYAPIN (SibFU) On the rationality of GF 07/24/2012 3 / 10	イロト イラト イミト ミミークペー Alexander LYAPIN (SibFU) On the rationality of GF 07/24/2012 4 / 10



Theorem

The generating function $F(z) = \sum_{x \in \mathbb{Z}_+^n} \frac{\varphi(x)}{z^{x+1}}$ of the solution of the difference equation (1) is

$$F(z)P(z) = \sum_{J} \sum_{ au \in \Gamma_J} \Phi_{ au,J}(z) P_{ au}(z), ext{ where } P_{ au}(z) = \sum_{\substack{lpha \leqslant m \ lpha \leqslant au}} c_{lpha} z^{lpha}$$

and $P(z) = \sum_{\alpha \in C} c_{\alpha} z^{\alpha}$ is the characteristic polynomial of the difference equation (1).

Corollary

The generating function F(z) of the solution of the difference equation (1) is rational if and only if the generating function $\Phi(z)$ of the initial data is rational.

On the rationality of GI

< ∃⇒

07/24/2012

07/24/2012

9 / 10

8 / 10

Example

Bloom's srtings

Bloom studies the number of singles in all the 2^x x-length bit strings, where a single is any isolated 1 or 0, i.e., any run of length 1. Let r(x, y) be the number of *n*-length bit strings beginning with 0 and having y singles.

• D.M.Bloom, Singles in a Sequence of Coin Tosses, The College Mathematics Journal, 29(1998), 307-344.

Example

Alexander LYAPIN (SibFU)

Bloom's srtings

Bloom studies the number of singles in all the 2^x x-length bit strings, where a single is any isolated 1 or 0, i.e., any run of length 1. Let r(x, y) be the number of *n*-length bit strings beginning with 0 and having y singles.

• D.M.Bloom, Singles in a Sequence of Coin Tosses, The College Mathematics Journal, 29(1998), 307-344.

The Cauchy problem

The sequence r(x, y) satisfies the difference equation r(x+2, y+1) - r(x+1, y+1) - r(x+1, y) - r(x, y+1) + r(x, y) = 0.with the «initial data» $\varphi(0,0) = 1, \varphi(1,0) = 0, \varphi(x,0) = \varphi(x-1,0) + \varphi(x-2,0), x \leq 2,$ $\varphi(1,1) = 1, \varphi(0, y) = 0, y \leq 1$ and $\varphi(1, y) = 0, y \leq 2.$

Computation

Alexander LYAPIN (SibFU)

$$\Phi_{0,0} = \frac{1}{zw}, \qquad P_{0,0} = z^2 w - zw - z - w,$$

$$\Phi_{1,0} = 0, \qquad P_{1,0} = z^2 w - zw - w,$$

$$\Phi_{0,1} = 0, \qquad P_{0,1} = z^2 w - zw - w,$$

$$\Phi_{1,1} = \frac{1}{z^2 w^2}, \qquad P_{1,1} = z^2 w,$$

$$\Phi_{2,0} = \frac{1}{zw(z^2 - z - 1)}, \qquad P_{2,0} = z^2 w - zw - w,$$

On the rationality of G

It's easy!

$$F(z) = \frac{z-1}{z^2w - zw - z - w + 1}$$

Alexander LYAPIN (SibFU)

(4 回) (4 回) (4 回)

- 31

07/24/2012