Intoduction

In this note we give a formula for the generating function of the solution of

MULTIDIMENSIONAL RECURSIVE SERIES a multidimensional difference equation under the assumption that the

generating function of the initial data is known. We also state the
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Siberian Federal Universit . . . . . . . .
Y Richard Stanley in his book « Enumerative combinatorics» gives a hierarchy

07/24/2012 of «the most useful» classes of the generating functions (GF):
D-finite D algebraic D rational.
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Let C = {a}, where a = (o, ..., ap), be a finite subset of the positive
octant Z" of the integer lattice Z", f : Z — C and let

De Moivre considered the recursive series as the power series m = (my, my,.... my) € C. Moreover for all - € C the condition
F(z) = f(0) + f(1)z + ...+ f(k)zX + ... with the constant coefficients
62} = A (0 2 o= G ar <my,...a, < m, (%)
f(0), f(1),... that make recursive sequence {f(n)},n=0,1,2,...
satisfying the difference equation be fulfilled.

cf(x+m)+af(x+m—-1)+...+cf(x+m—i)+...4+ cnf(x) =0, Uis prelism Cewey

The problem Cauchy is to find the solution f(x) of the difference equation

with some constant coefficients ¢; € C, where 0 < i < m. (we use a multidimensional notation)
In 1722 he proved that the power series F(z) are rational functions. ] Z caf(x+a) =0, (1)
aeC

which coincides with the some given function ¢ : X, — C on the set
Xm =277\ (m+Z7) («initial data»).
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It's well known that this Cauchy problem has a unique solution. )

@ M. Bousquet-Mélou, M. Petkovsek, Linear recurrences with constant
coefficients: the multivariate case, DM, 225, 51-75.

e E. Leinartas, Multiple Laurent Series and Difference Equations.
Siberian Mathematical Journal, 2004, Volume 45, Number 2, 321-326.

e E. Leinartas, Multiple Laurent series and fundamental solutions of
linear difference equations, Siberian Mathematical Journal, Vol. 48,
No. 2, pp. 268-272.

Alexander LYAPIN (SibFU) On the rationality of GF 07/24/2012 5/ 10

Let J = (J1,.--,Jn), where jx € {0,1}, k=1, ...,
and ones. With every such set J we associate the face ' of the
n-dimensional integer parallelepiped

Mpm={x€Z":0< xx < my,k=1,...,n}

as follows:

My={x€Nm:xx=my, if jy =1, and x < my, if jx = 0}.
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n, is an ordered set of zeros
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GF of «inital data»
The function

o(x)
¢(Z) = zx+l
XEXm

is the generation function of the initial data of the difference equation (1).

v

GF of «inital data» can be represented as the sum

> 0u(2),
J

®(z) =

where
o(T + Jy)
ZT+Jy+I :

- Z cDT,J(Z)? ¢

T€ly

T,J(Z) =
y=0

On the rationality of GF
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Theorem

The generating function F(z) = )
xELY

equation (1) is

F(z)P(z) = Z Z o, 4(2)Pr(z), where P ( Z CaZ
J Tely a<m
a;{‘r
and P(z) = > c,z® is the characteristic polynomial of the difference

acC
equation (1).

fx(fl) of the solution of the difference
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Theorem

The generating function F(z) = XGXZ:H fxfl) of the solution of the difference Bloom’s srtings
equation (1) is " Bloom studies the number of singles in all the 2% x-length bit strings,
where a single is any isolated 1 or 0, i.e., any run of length 1. Let r(x,y) be
F(z)P(z) Z Z ¢ 4(2)P-(2), where P( Z Caz® the number of n-length bit strings beginning with 0 and having y singles.
J Tely a<m
il @ D.M.Bloom, Singles in a Sequence of Coin Tosses, The College
and P(z) = > caz® is the characteristic polynomial of the difference Mathematics Journal, 29(1998), 307-344.
equation (1 ).aeC )

The generating function F(z) of the solution of the difference equation (1)
is rational if and only if the generating function ®(z) of the initial data is

rational.
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Bloom's srtings

Bloom studies the number of singles in all the 2* x-length bit strings, 1

- = — 20 s
where a single is any isolated 1 or 0, i.e., any run of length 1. Let r(x,y) be $o,0 = W’ Poo=2zw—zw—z—w,
the number of n-length bit strings beginning with 0 and having y singles. $10 =0, Pio= 22w —zw —w,

— P — 2 — p—

e D.M.Bloom, Singles in a Sequence of Coin Tosses, The College o1 = 0’1 Por =z'w —zw =z,

Mathematics Journal, 29(1998), 307-344. P11 =5, P11 = Z°w,
z2w

The Cauchy problem ®yp = 1 Po = Z°w — zw — w,

The sequence r(x, y) satisfies the difference equation
r(x+2,y+1)—r(x+1,y+1)—r(x+1,y)—r(x,y +1)+ r(x,y) = 0.
with the «initail data»

©(0,0) =1,¢(1,0) = 0,p(x,0) = p(x — 1,0) + p(x — 2,0),x < 2,

©(1,1) =1,¢(0,y) =0,y <1land p(1,y) =0,y < 2.
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