Hyperbolicity in dissipative polygonal billiards

João Lopes Dias

Departamento de Matemática - ISEG e CEMAPRE Universidade Técnica de Lisboa Portugal

Joint work with

P. Duarte, G. del Magno, J.P. Gaivão, D. Pinheiro

Outline

(1)

Billiard dynamics

- Examples of billiard tables
- Examples of reflection laws

Conservative polygons

3 Dissipative polygons

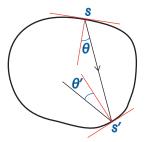
- Hyperbolicity
- SRB measures

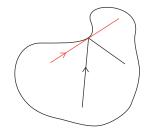
A billiard is a mechanical system consisting of a point-particle moving freely inside a planar region D (**billiard table**) and being reflected off the perimeter of the region ∂D according to some **reflection law**.

Example (Billiards in the world)

- Light in mirrors
- Acoustics in closed rooms, echoes
- Lorentz gas model for electricity (small electron bounces between large molecules)
- games: billiard, pool, snooker, pinballs, flippers

Examples of billiard tables



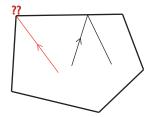


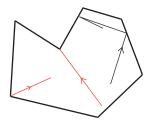
Convex

Non-convex

 $\begin{array}{l} {\rm Smooth \ billiards} \\ {\rm billiard \ map \ } \Phi \colon (s,\theta) \mapsto (s',\theta') \end{array}$

Examples of billiard tables





Non-convex

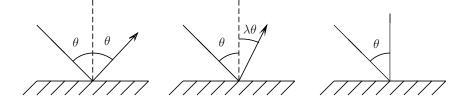
Polygonal billiards

More examples

Triangle

Z-shaped

Examples of reflection laws



Conservative classical standard specular elastic $\lambda = 1$

 $\begin{array}{l} \mbox{Linear contraction}\\ \mbox{dissipative}\\ \mbox{non-elastic}\\ \mbox{pinball}\\ \mbox{0} < \lambda < 1 \end{array}$

Slap $\lambda = 0$

Singularities/Discontinuity points

$$V=\{ ext{corners and tangencies}\} imes \left(-rac{\pi}{2},rac{\pi}{2}
ight)$$
 $S^+=V\cup\Phi^{-1}(V)$

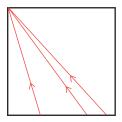
Billiard map

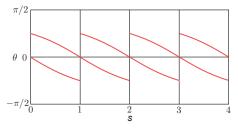
Piecewise smooth

$$\Phi \colon M \to \overline{M}$$
$$(s,\theta) \mapsto (s',\theta')$$

Phase space

$$M = \partial D \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus S^+$$





Polygonal convex billiard table (it has corners)

 $\mathsf{Phase \ space \ } M$

Standard reflection law

The billiard map Φ preserves the measure $\cos\theta\,d\theta\,ds$

Conservative system

No attractors

Contractive reflection law

The area is contracted Dissipative system There are attractors

Billiard dynamics

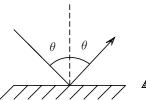
- Examples of billiard tables
- Examples of reflection laws

2 Conservative polygons

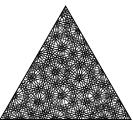
3 Dissipative polygons

- Hyperbolicity
- SRB measures

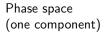
Conservative convex polygonal billiards



Specular reflection law



Configuration space regular triangle

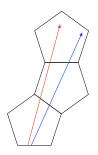


Conservative polygons are not chaotic

Zero Lyapunov exponents:

$$LE(x, \alpha, v) = \lim_{t \to +\infty} \frac{1}{t} \log \|D\Phi^t(x, \alpha)v\| = 0$$

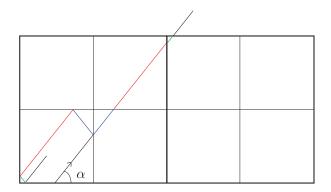
where Φ^t is the billiard flow, $\mathcal{M} = (D \times S^1) / \sim$ is the phase space



"Unfolding" the polygonal table along the orbit Linear divergence of straight lines

The square

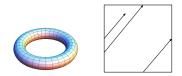
Reduction to a torus flow with direction $\alpha \in S^1$



Unfolding the square table

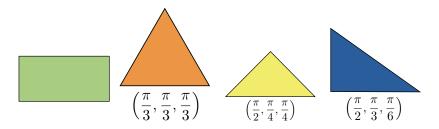
A billiard is integrable if

- $\Phi^t(\mathcal{M}_\alpha) = \mathcal{M}_\alpha$
- $\Phi^t|_{\mathcal{M}_{\alpha}}$ linear flow, i.e. $\Phi^t(x, \alpha) = (x + t(\cos \alpha, \sin \alpha), \alpha)$



Linear flow on a torus is either **periodic** or **quasi-periodic** (minimal, ergodic)

The only integrable polygons are:

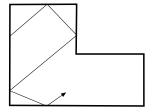


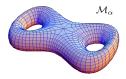
A billiard is quasi-integrable if

- $\Phi^t(\mathcal{M}_\alpha) = \mathcal{M}_\alpha$
- ${\small \textcircled{0}} \ \Phi^t|_{\mathcal{M}_{\alpha}} \ {\rm linear}$
- $\textcircled{O} \mathcal{M}_{\alpha} \text{ has genus } g > 1$

Example

$g(\mathcal{M}_{\alpha})=2$ for the L-shaped polygon





L-shaped billiard table

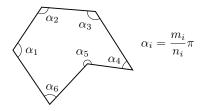
Example

 $k\text{-regular polygon with }\alpha = \frac{k-2}{k}\pi = \frac{m}{n}\pi$ with m and n co-prime,

$$g(\mathcal{M}_{\alpha}) = 1 + \frac{n}{2} \left(k - 2 - \frac{k}{n} \right)$$

Rational polygons

A polygon is **rational** if every internal angle $\alpha_i \in \pi \mathbb{Q}$



For a polygon with k-sides, N least common multiplier of n_i $g(\mathcal{M}_{\alpha}) = 1 + \frac{N}{2} \left(k - 2 - \sum_{i=1}^k \frac{1}{n_i}\right)$

Theorem (Veech)

Rational polygons are either integrable or quasi-integrable

Relation with Teichmuller spaces, quadratic differentials, interval exchange transformations...

Theorem (Kerchoff-Masur-Smillie)

Polygonal billiards are generically ergodic

- Not known if a given irrational polygon is ergodic
- Not known if every triangle has a periodic orbit

Outline

Billiard dynamics

- Examples of billiard tables
- Examples of reflection laws

Conservative polygons

Oissipative polygons

- Hyperbolicity
- SRB measures

Let

- Dissipative reflection law $\theta \mapsto \lambda \theta$, $0 < \lambda < 1$
- $U=\{|\theta|<\lambda\pi/2\}$ is an invariant set
- the full-measure set of points whose orbit remains forever in the domain is

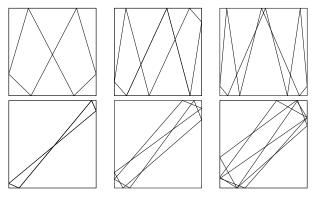
$$U^+ = \{ x \in U \colon \Phi^n_\lambda(x) \notin S^+, n \ge 0 \}$$

• The attractor of Φ_{λ} is the invariant set:

$$\Omega_{\lambda} = \overline{\bigcap_{n \ge 0} \Phi_{\lambda}^n(U^+)}$$

It might have several components

For many billiards there are many periodic orbits. E.g.



Square, $\lambda = 0.6$.

Parabolic attractor:

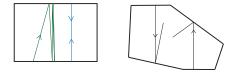
$$\mathcal{P} = \{ \mathsf{Period 2 orbits} \} \subset \{ \theta = 0 \}$$

Basin of attraction:

$$W^{s}(\mathcal{P}) = \{(s,\theta) \in M : \operatorname{dist}(\Phi^{n}_{\lambda}(s,\theta),\mathcal{P}) \to 0\}$$

Remark

 $\mathcal{P} \neq \emptyset$ iff there are parallel sides facing each other



Let Σ be a Φ_{λ} -invariant set (e.g. periodic orbits, horseshoes, attractors)

Theorem (Markarian-Pujals-Sambarino)

For every polygon, Σ has **dominated splitting**: there is a non-trivial continuous invariant splitting $T\Sigma = E \oplus F$, $0 < \mu < 1$ and c > 0 st on Σ

$$\frac{\|D\Phi_{\lambda}^{n}|_{E}\|}{\|D\Phi_{\lambda}^{n}|_{F}\|} \le c\mu^{n}, \quad n \ge 0$$

Dominated splitting is weaker than uniform hyperbolicity

$$\|D\Phi_{\lambda}^{n}|_{E}\| \le c\mu^{n} \qquad \|D\Phi_{\lambda}^{-n}|_{F}\| \le c\mu^{n}$$

Theorem

If the polygon has

- no parallel sides facing each other,
- OR parallel sides facing each other AND ∃C > 0 st orbits in ∑ do not bounce more than C times between parallel sides,

then Σ is uniformly hyperbolic

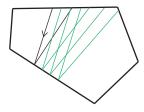
Example

Odd-sided regular polygons do not have parallel sides

Example (periodic orbits)

- Period = 2, parabolic \mathcal{P}
- Period > 2, hyperbolic

Local unstable manifold of periodic points is inside $\{\theta = const\}$. Global is cut in local pieces due to singularities.



Let D be a regular polygon with 2N sides $(N \ge 3)$

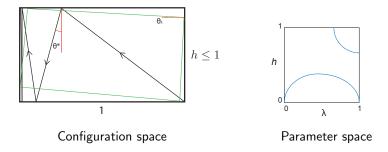
Theorem

If $\Sigma \neq \mathcal{P}$ and $\lambda < \frac{1}{2}$, then Σ is uniformly hyperbolic

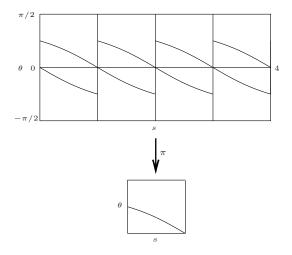
Rectangles

Proposition

- If $\Sigma \neq \mathcal{P}$ and $h \sum_{n \geq 0} \tan \left(\lambda^{n+1} (1-\lambda) \frac{\pi}{2} \right) > 1$, then Σ is uniformly hyperbolic
- 2 If $\theta_{\lambda} \leq \theta_{*}$, then \mathcal{P} attracts every orbit ($\Omega_{\lambda} = \mathcal{P}$)

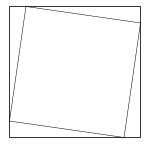


The square billiard h = 1

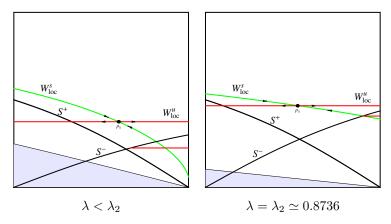


Phase space reduction - reduced billiard map

The square billiard h = 1



Period 4 orbit = fixed point of reduced map

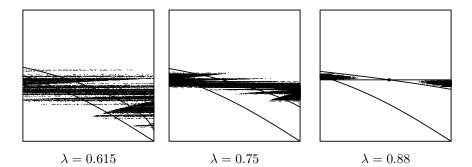


Invariant manifolds of the fixed point p_λ Transverse homoclinic intersection for $0<\lambda<\lambda_2$ Existence of horseshoe

Proposition

For $0 < \lambda < \lambda_2$, Φ_{λ} has positive topological entropy

Hyperbolic attractors



Square billiard: non-trivial attractor

Sinai-Ruelle-Bowen measures

A $\Phi_\lambda\text{-invariant}$ measure μ that has absolutely continuous conditional measures on unstable manifolds.

Remark

"The relevance of SRB measures lies in the fact that they are the invariant measures more related to volume for dissipative systems, helping to explain how local instability on attractors gives coherent statistics for orbits starting at the basin of attraction." (Lai-Sang Young)

Equivalently, there is a positive Lebesgue measure set of $x \in M$ st

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \varphi(\Phi_{\lambda}^{j}(x)) = \int_{M} \varphi \, d\mu, \quad \varphi \in C^{0}(M, \mathbb{R})$$

 $\lambda = 0.3$

 $\lambda = 0.7$

 $\lambda = 1$

Reduced regular triangle: non-trivial attractor

Theorem (Arroyo-Markarian-Sanders)

The regular triangle has a transitive attractor with an ergodic SRB invariant measure for $\lambda < 1/3$.

Theorem

For sufficiently small λ regular polygons with 2N + 1 sides

have uniformly hyperbolic attractors with finitely-many SRB measures
 and dense hyperbolic periodic orbits

2 are ergodic iff
$$N = 1, 2$$

Theorem

Generic polygons have uniformly hyperbolic attractors with finitely-many SRB measures and dense hyperbolic periodic orbits for sufficiently small λ .

Idea of proof: For $\lambda \simeq 0$, Φ_{λ} is close to slap map Φ_0 (1-dim piecewise affine expanding map), and satisfies conditions:

- uniform hyperbolicity
- $\ensuremath{\textcircled{0}}$ the smallest expansion rate along unstable direction is >p
- **③** $\Phi_{\lambda}(W^{u}_{loc})$ is cut by singularities S^{+} in no more than p pieces

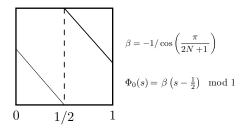
Theorem

Then the attractor has finitely-many SRB measures and dense hyperbolic periodic orbits

Proof: Version of Pesin result

Slap maps $\lambda = 0$

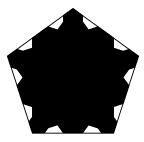
If there are no parallel sides, the slap map is a piecewise affine expanding map of the interval. Thus, it has expanding attractors [Markarian-Pujals-Sambarino]



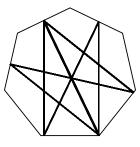
Slap map of regular polygon with $2N+1 \ {\rm sides}$

Proposition

For regular polygons, only the triangle and the pentagon have an ergodic slap map (with respect to the invariant measure on the attractors)



 ${\rm Pentagon}\ \lambda=0$



 ${\rm Heptagon}\,\,\lambda=0$