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Introduction

Definition:

A difference equation is a recurrence relation of the form
xn+1 = f (xn, xn−1, . . .).

For this talk, we will consider xn+1 = f (xn, xn−1), where f is a
rational function.

When nonnegative initial conditions x−1 and x0 are given in such a
way that the denominator is nonzero, we say that the sequence
{xn}∞n=−1 is a solution to the difference equation, if the sequence
satisfies the given relation.
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Preliminary

Theorem 1 (Amleh, Camouzis, Ladas)

Let I be a set of real numbers and let

f : I × I → I

be a function f (z1, z2) which increases in both variables. Then for
every solution, {xn}∞n=−1, of xn+1 = f (xn, xn−1), the subsequences
{x2n}∞n=0 and {x2n+1}∞n=−1 do exactly one of the following:

(i) Eventually they are both monotonically increasing.

(ii) Eventually they are both monotonically decreasing.

(iii) One of them is monotonically increasing and the other is
monotonically decreasing.
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Preliminary

Theorem 2 (Camouzis, Ladas)

Let I be a set of real numbers and suppose that

f : I × I → I

be a function f (z1, z2) which decreases in z1 and increases in z2.

Then for every solution, {xn}∞n=−1, of xn+1 = f (xn, xn−1), the
subsequences {x2n}∞n=0 and {x2n+1}∞n=−1 are either

(i) both monotonically increasing,

(ii) both monotonically decreasing,

(iii) or eventually one subsequence is increasing and the other is
decreasing.
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Autonomous Equation

We consider the second order difference equation of the form:

Equation (1)

xn+1 =
α+ βxnxn−1 + γxn−1

A+ Bxnxn−1 + Cxn−1
, n = 0, 1, 2, . . . (1)
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Autonomous Equation

We consider the second order difference equation of the form:

Equation (1)

xn+1 =
α+ βxnxn−1 + γxn−1

A+ Bxnxn−1 + Cxn−1
, n = 0, 1, 2, . . . (1)

Note:

This equation was studied extensively in the following:

1. A.M. Amleh, E. Camouzis, G. Ladas, “On The Dynamics of
Rational Difference Equations, Part 1,” International Journal
of Difference Equations, 3(1):1–35, 2008.

2. A.M. Amleh, E. Camouzis, G. Ladas, “On the Dynamics of
Rational Difference Equations, Part 2,” International Journal
of Difference Equations, 3(2):195–225, 2008.
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The Equation xn+1 =
αn

1+xnxn−1

Equation (2)

xn+1 =
αn

1 + xnxn−1
, n = 0, 1, 2, . . . (2)

The autonomous case, when αn = α, was studied by Amleh,
Camouzis and Ladas in [1].

They showed that every solution was bounded for all values of
α > 0 and for all nonnegative initial conditions.

They showed that every solution converged to a finite limit for
0 ≤ α < 2 and for all initial nonnegative conditions.

They conjectured that every solution converges for all values
of α > 0.
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Every solution of xn+1 =
α

1+xnxn−1
converges

We have confirmed the conjecture by Amleh, Camouzis, and
Ladas, namely,

Theorem 3

Let α > 0. Every solution to the equation xn+1 =
α

1 + xnxn−1
converges to a finite limit.
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Boundedness

Theorem 4

If k > 0, and {αn} is a nonnegative sequence of real numbers with

period-k, then every solution to the equation xn+1 =
αn

1 + xnxn−1
is

bounded.
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Period-2 Convergence

Theorem 5

If {αn} = {α0, α1, α0, α1, . . .}, where α0, α1 are distinct,
nonnegative real numbers, then every solution to the equation

xn+1 =
αn

1 + xnxn−1
converges to a unique prime period-two

solution.
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Sketch of Proof

We begin by defining a new sequence

zn+1 = x2n+1x2n+2 (3)

zn+1 =
α0α1

(1 + x2nx2n−1)(1 + x2n+1x2n)
(4)

zn+1 =
α0α1

(1 + zn)(1 + zn−1)
. (5)

We then show that every solution, {zn}, to this difference
equation converges.

We use the change of variable zn =
√
α0α1

yn
− 1 to transforms

Eq. (5) into

yn+1 =

√
α0α1

1 + ynyn−1
. (6)

And thus, the even and odd subsequences of the {xn} solution
converge to distinct limits if α0 6= α1.
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Advantageous Behavior

Definition

A difference equation with coefficients from a periodic
environment, which converges to a periodic limit is said to be
advantageous if the arithmetic mean of the periodic limits is
greater than the limit of the autonomous case, with coefficients
equal to the arithmetic mean of the periodic parameters.
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Advantageous Behavior

Definition

A difference equation with coefficients from a periodic
environment, which converges to a periodic limit is said to be
advantageous if the arithmetic mean of the periodic limits is
greater than the limit of the autonomous case, with coefficients
equal to the arithmetic mean of the periodic parameters.

Theorem 6

If {αn} is a prime period-two sequence, then the equation

xn+1 =
αn

1 + xnxn−1
is advantageous, in the sense that the

average of the periodic limits is greater than the limit with the
average of the coefficients.

Drymonis, Kostrov, Kudlak On Rational Difference Equations with Periodic Coefficients

The Advantageous Behavior of xn+1 =
αn

1+xnxn−1

Figure: The first 50 terms, where α0 = 0.5, α1 = 10.7 compared to the
autonomous equation with α = 0.5+10.7

2 = 5.6.
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Proof of Advantageous Behavior

Define a = α0+α1
2 .

Consider the autonomous equation

yn+1 =
a

1 + ynyn−1
, n = 0, 1, . . .

In [1], it is shown that this solution converges to ȳ , the unique
positive solution to ȳ3 + ȳ − a = 0.

Define the equation f (y) = y3 + y − a.
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Proof of Advantageous Behavior

The {zn} sequence has a unique positive equilibrium z̄ which
is the positive root to the equation

z̄3 + 2z̄2 + z̄ − α0α1 = 0

{x2n+1} converges to α0
1+z̄ .

{x2n} converges to α1
1+z̄ .

L =
α0
1+z̄ + α1

1+z̄

2
=

a

1 + z̄
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Proof of Advantageous Behavior

We want to show that f (L) > 0.

f (L) =
a3

(1 + z̄)3
+

a

1 + z̄
− a

=
a(α0 − α1)

2

4(1 + z̄)3
≥ 0

This shows that when the coefficients have period-2, then the
average of their limiting sequence will always be larger than a
constant coefficient sequence with parameter with the same
average.
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The Equation xn+1 =
αn

(1+xn)xn−1

We now consider the equation

xn+1 =
αn

(1 + xn)xn−1
, n ≥ 0 (7)

where {αn}∞n=0 is a periodic sequence.

Autonomous Case

Amleh, Camouzis, and Ladas showed that the autonomous case of
this equation possesses an invariant, namely,

xn−1 + xn + xn−1xn + α

(
1

xn−1
+

1

xn

)
= constant,∀n ≥ 0. (8)

This implies that every solution of this equation is bounded from
above and from below by positive constants.
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Non-autonomous case

Theorem 7

Let {αn}∞n=0 = {α0, α1, α0, α1, . . .} be a period-two sequence.
Then, Equation (7) possesses an invariant, namely,

xn−1 + xn + xn−1xn +
αn

xn−1
+

αn+1

xn
= constant,∀n ≥ 0. (9)
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Non-autonomous case

Theorem 7

Let {αn}∞n=0 = {α0, α1, α0, α1, . . .} be a period-two sequence.
Then, Equation (7) possesses an invariant, namely,

xn−1 + xn + xn−1xn +
αn

xn−1
+

αn+1

xn
= constant,∀n ≥ 0. (9)

Corollary 8

When {αn} is a period-two sequence, then every solution to
Equation (7) is bounded by positive constants.
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Non-autonomous case

Theorem 7

Let {αn}∞n=0 = {α0, α1, α0, α1, . . .} be a period-two sequence.
Then, Equation (7) possesses an invariant, namely,

xn−1 + xn + xn−1xn +
αn

xn−1
+

αn+1

xn
= constant,∀n ≥ 0. (9)

Corollary 8

When {αn} is a period-two sequence, then every solution to
Equation (7) is bounded by positive constants.

Note:

This partially answers an open question posed by Amleh,
Camouzis, and Ladas in [1].
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The Invariant of xn+1 =
αn

(1+xn)xn−1

Figure: Showing the invariant cycles of the first 500 terms, α0 = 2.5,
α1 = 15.1, x−1 = 1.1, x0 = 10.3.
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Are there invariants for higher periods?

Figure: Showing the invariant cycles of the first 1000 terms, α0 = 1.1,
α1 = 1.3, α2 = 1.0, x−1 = 1.1, x0 = 1.0.
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Are there invariants for higher periods?

Figure: Showing the invariant cycles of the first 1000 terms, α0 = 1.1,
α1 = 1.3, α2 = 1.0, x−1 = 1.1, x0 = 2.0.
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Are there invariants for higher periods?

Figure: Showing the invariant cycles of the first 100, 000 terms,
α0 = 1.1, α1 = 1.3, α2 = 1.0, x−1 = 1.1, x0 = 2.0.
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The Equation xn+1 =
βnxnxn−1

1+xnxn−1

We now consider the equation

Next Equation

xn+1 =
βnxnxn−1

1 + xnxn−1
, n = 0, 1, 2, . . . (10)

and{βn}∞n=0 is a periodic sequence.

Autonomous Case

Amleh, Camouzis, and Ladas have shown that when βn = β, then
every solution to Equation (10) converges to a finite limit.
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Non-Autonomous Case

xn+1 =
βnxnxn−1

1 + xnxn−1
, n = 0, 1, 2, . . .

Theorem 9

Every solution to Equation (10) is bounded when the coefficient βn
is periodic.
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Period-2 case

Consider

xn+1 =
βnxnxn−1

1 + xnxn−1
, n = 0, 1, 2, . . .

where {βn} is a prime period-two sequence, {β0, β1, β0, β1, . . .}.

Theorem 10

Let B = β0 · β1. Then:
(i.) For B < 4, every solution of xn+1 =

βnxnxn−1

1+xnxn−1
will converge to

0.

(ii.) For B ≥ 4, every solution of xn+1 =
βnxnxn−1

1+xnxn−1
will converge to

a period-2 solution.
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Proof of Theorem 10

zn+1 = x2n+1x2n+2

zn+1 =
Bznzn−1

(1+zn)(1+zn−1)

Claim: Every solution to zn+1 =
Bznzn−1

(1+zn)(1+zn−1)
converges.

Let us define a function f (x , y) such that zn+1 = f (zn, zn−1).

{zn}∞n=−1 converges according to the Amleh-Camouzis-Ladas
Theorem.
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Sketch of the proof

Suppose that lim
n→∞

zn = z̄.

z̄(1 + z̄)2 = Bz̄2

z̄ = 0 or z̄ =
(B − 2)±

√
B(B − 4)

2

If B < 4 then z̄ = 0 is the only equilibrium.

If B = 4 then z̄ = 1.

If B > 4 then there exist two positive equilibria z̄1 < z̄2.
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The Equation xn+1 =
γnxn−1

1+xnxn−1

We next consider the equation

xn+1 =
γnxn−1

1 + xnxn−1
(11)

Where {γn}∞n=0 is a periodic sequence.

Autonomous Case

Amleh, Camouzis, and Ladas showed that when {γn} is a constant
sequence, every positive solution to Equation (11) is bounded.
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Periodicity Destroys Boundedness of xn+1 =
γnxn−1

1+xnxn−1

Assume now that {γn}∞n=0 = {γ0, γ1, γ0, γ1, . . .}.

Theorem 11

When {γn} is a period-two sequence there exist unbounded
solutions to equation (11).

Conditions for Unboundedness

The following conditions for initial conditions x−1 and x0 and
parameters γ0 and γ1 force an unbounded solution to Equation
(11):

x−1 < γ0 < 1 < γ1 < x0 (12)

γ0 · γ1 = 1 (13)
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An Unbounded Solution of xn+1 =
γnxn−1

1+xnxn−1

Figure: The first 100 terms of the solution with x−1 = 0.5, γ0 = 0.95,
γ1 = 0.95−1, x0 = 1.5.
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Sketch of the proof

zn+1 = x2n+1x2n+2

zn+1 =
γ0γ1zn−1

(1 + zn)(1 + zn−1)
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Sketch of the proof

zn+1 = x2n+1x2n+2

zn+1 =
γ0γ1zn−1

(1 + zn)(1 + zn−1)

Lemma 12

When γ0 · γ1 ≤ 1, zero is a globally asymptotically stable
equilibrium of {zn}.
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Consider
f (x , y) =

γ0γ1y

(1 + x)(1 + y)
,

f (x , y) is decreasing in x and increasing in y .

There are no period-two solutions when γ0 · γ1 ≤ 1.

The Camouzis-Ladas Theorem applies, and it follows that
{zn}∞n=−1 converges to a finite limit.

Furthermore,
z̄(1 + 2z̄ + z̄2) = γ0γ1z̄ , (14)

z̄ = 0 is the unique solution when γ0γ1 ≤ 1.

Drymonis, Kostrov, Kudlak On Rational Difference Equations with Periodic Coefficients



Sketch of the proof

Let x−1, x0, γ0 and γ1 satisfying the following:

x−1 < γ0 < 1 < γ1 < x0 and γ0 · γ1 = 1

Then
x1 =

γ0x−1

1 + x0x−1
< γ0x−1 < x−1

Thus, {x2n+1} is decreasing, and must converge to zero.

Since zn = xn · xn−1 → 0, there exists some N > 0 such that
for all n ≥ N, xn · xn−1 < γ1 − 1.
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Sketch of the proof

We have:

x2N+1x2N < γ1 − 1 (15)

γ1 > 1 + x2N+1x2N (16)
γ1

1 + x2N+1x2N
> 1. (17)

Thus

x2N+2 =
γ1x2N

1 + x2N+1x2N
=

(
γ1

1 + x2N+1x2N

)
x2N > c · x2N

Where c > 1 is a constant.

{x2n} is increasing without bound.
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When does Equation (11) converge with Period-2
coefficients?

xn+1 =
γnxn−1

1 + xnxn−1

Theorem 13

If γ0, γ1 ∈ [0, 1) then every positive solution of equation (11)
converges to zero.
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The Equation xn+1 =
αn+xn−1

(1+Bnxn)xn−1

Consider the equation

xn+1 =
αn + xn−1

(1 + Bnxn)xn−1
, n ≥ 0 (18)

Autonomous Case

When {αn} and {Bn} are constant sequences, Amleh, Camouzis,
and Ladas have shown that every solution to the equation is
bounded.
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Periodicity Destroys Boundedness of xn+1 =
αn+xn−1

(1+Bnxn)xn−1

Theorem 14

There exist unbounded solutions to

xn+1 =
αn + xn−1

(1 + Bnxn)xn−1
, n ≥ 0 (19)

when {αn} and {Bn} are sequences with period-three.
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An Unbounded Solution of xn+1 =
αn+xn−1

(1+Bnxn)xn−1

Figure: α0 = 0, α1 = 1, α2 = 2, B0 = 1, B1 = 2, B2 = 1
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Sketch of the proof

Assume α0 = 0, α1 = 1, α2 = 2 and B0 = 1,B1 = 2,B2 = 1.
Consider the 3 sub-sequences defined by:

x3n+1 =
1

1 + x3n

x3n+2 =
1 + x3n

(1 + 2x3n+1)x3n

x3n+3 =
2 + x3n+1

(1 + x3n+2)x3n+1

It suffices to show that limn→∞ x3n+3 = ∞.

x3n+2 =
(1 + x3n)

2

(3 + x3n)x3n

x3n+3 =

(
1 + 9x3n + 2(x3n)

2

1 + 5x3n + 2(x3n)2

)
x3n
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