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Difference equations of higher order

A difference equation is an expression given by

xn+1 = g(xn, xn−1, . . . , xn−k ), n ≥ 0, (x0, x−1, . . . , x−k ) ∈ Ik+1, (DE)

where:

I = (a, b), −∞ ≤ a < b ≤ +∞;

k + 1 ∈ Z+: order of the equation;

g : Ik+1 → I is a continuous (sufficiently smooth) map;

Orbit: (xn)+∞
n=−k starting from the initial condition (x0, x−1, . . . , x−k );

Fixed point: u = g(u, u, . . . , u).

Our general aim: to study the dynamics (the asymptotic behaviour) of the
orbits of (DE). For starters:

If an orbit (xn) of (DE) converges to u ∈ I, then u is a fixed point.
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Stability and attraction

Definition

A fixed point u is a global attractor of (DE) if all orbits converge to u.

A fixed point u is a local attractor of (DE) if orbits with initial conditions
close enough to u converge to u.

A fixed point u is stable for (DE) if for any ε > 0 there is δ > 0 such that
|xn − u| < δ for any −k ≤ n ≤ 0 implies |xn − u| < ε for all n. If u is not
stable then it is called unstable.

Global(respectively, local) stable attractors are often called in the literature
globally (respectively, locally) asymptotically stable, or, shortly, G.A.S.
(respectively, L.A.S.).

A tricky point: in dimension one, a global attractor is always stable (Sedaghat
1997); in higher dimensions this may not happen (Sedaghat 1998)

Our more specific aim: to study whether L.A.S. may imply G.A.S. for (DE).
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The first order case

In what follows we assume that the interval map h : I → I satisfies the
following properties:

(S1) there is u ∈ I such that h(x) > x (respectively, h(x) < x) for any x < u
(respectively, x > u).

(S2) h′(x) vanishes at most at one point (a turning point).

Schwarzian derivative

Sh(x) =
h′′′(x)

h′(x)
− 3

2

(
h′′(x)

h′(x)

)2

.

If additionally, we have

(S3) Sh(x) < 0 for any x ∈ I (except possibly at its turning point),

then we say that h belongs to the class S.
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The first order case
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Figure 1: Shepherd’s function h(x) = px/(1 + xq) with p = 9, q = 3, u = 2, belongs to
the class S.
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The first order case

Theorem (Singer 1978)

If h belongs to the class S, then

|h′(u)| ≤ 1⇔ L.A.S.⇔ G.A.S.

The interesting case is h′(u) < 0, because if h′(u) ≥ 0, then, regardless (S3)
is satisfied or not, we have G.A.S.

What about “L.A.S.⇔ G.A.S” for (DE) if it is “dominated”, in some sense by a
one-dimensional map h?
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The higher order case

Below, α : Ik+1 → (0, 1):

xn+1 = α(xn, . . . , xn−k )xn−k + (1− α(xn, . . . , xn−k ))h(xn) (E1)

Relevant example (Tilman and Wedin 1991):

xn+1 = pxn + (q + rxn−1)e−xn , I = (0,∞), 0 < p, r < 1, q > 0;

here
α(x) = 1− re−x ,

h(x) =
px + qe−x

1− re−x .
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Ricker’s function h(x) = pxe−qx (Gurney, Blythe and Nisbet, 1980)



Preliminaries More about Clark’s equation Main results

The higher order case

Below, α : Ik+1 → (0, 1):

xn+1 = α(xn, . . . , xn−k )xn + (1− α(xn, . . . , xn−k ))h(xn−k ), (E2)

Relevant example (Clark 1976):

xn+1 = αxn + (1− α)h(xn−k ), 0 < α < 1 (CE)

Typical maps h for Clark’s equation (I = (0,∞), p, q > 0):

Shepherd’s function h(x) = px/(1 + xq) (Mackey and Glass, 1977)

Ricker’s function h(x) = pxe−qx (Gurney, Blythe and Nisbet, 1980)

Preliminaries More about Clark’s equation Main results

The higher order case

Below, α : Ik+1 → (0, 1):

xn+1 = α(xn, . . . , xn−k )xn + (1− α(xn, . . . , xn−k ))h(xn−k ), (E2)

Relevant example (Clark 1976):

xn+1 = αxn + (1− α)h(xn−k ), 0 < α < 1 (CE)

Typical maps h for Clark’s equation (I = (0,∞), p, q > 0):

Shepherd’s function h(x) = px/(1 + xq) (Mackey and Glass, 1977)

Ricker’s function h(x) = pxe−qx (Gurney, Blythe and Nisbet, 1980)

Preliminaries More about Clark’s equation Main results

The higher order case

An important fact: v is a fixed point for (E1) and (E2)⇔ v is a fixed point of h.
Thus, u is the only fixed point for (E1) and (E2).

Theorem (Fisher 1984 and many more...)

G.A.S. (respectively, L.A.S.) for h implies G.A.S (respectively, L.A.S) for (E1)
and (E2). In particular, if h belongs to the class S and |h′(u)| ≤ 1, then u is a
global attractor both for (E1) and (E2).

DeVault et al. 1995, El-Morshedy and J.L. 2008

Indeed if k is odd, then

G.A.S (respectively L.A.S.) for h⇔ G.A.S (respectively L.A.S.) for (E1)
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The higher order case

For equation (E2) (and equation (E1) if k is even) things are much more
complicated because it is quite possible that u is locally attracting for it while
u is unstable for h.

Our precise aim: to study whether L.A.S. implies G.A.S. for (CE) when h
belongs to the class S.

In what follows we always assume h′(u) < −1.
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L.A.S. for Clark’s equation

Let (rk (Θ), αk (Θ)) be given by

rk (Θ) =
sin(Θ/(k + 1))

sin(Θ)− sin(kΘ/(k + 1))
,

αk (Θ) =
sin(Θ)

sin(kΘ/(k + 1))
,

Θ ∈ ((k + 1)π/(2k + 1), π).

This curve can also be seen as the graph of a decreasing function α = ak (r),
r ∈ (−∞, 1), with

lim
r→−∞

ak (r) = 1, lim
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Theorem (Kuruklis 1994)

Let r = h′(u). Then u is locally attracting (respectively, unstable) for (CE) if
α > ak (r) (respectively, α < ak (r)).

Preliminaries More about Clark’s equation Main results

G.A.S. for Clark’s equation

Theorem (Tkachenko and Trofimchuk 2005)

Assume that g belongs to the class S and let r = h′(u). Then u is globally
attracting for (CE) if

αk+1 ≥ −r log
r 2 − r
r 2 + 1

.

In the case k = 1 they improve the above condition as follows:

either α2 ≥ r + 1
r − 1

and α ≤ 0.88, or α ≥ max
{

0.88,
r + 0.88

r

}
.

It has been conjectured that if h belongs to the class S, then α > ak (r) is
actually enough to get global attraction for (CE), that is, L.A.S. implies G.A.S.
(Györi and Trofimchuk 2000, El-Morshedy and Liz 2005). Some numerical
estimates support it (Wang and Wei 2008, Liz 2009).
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(Györi and Trofimchuk 2000, El-Morshedy and Liz 2005). Some numerical
estimates support it (Wang and Wei 2008, Liz 2009).

Preliminaries More about Clark’s equation Main results

L.A.S. and G.A.S for Clark’s equation
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Figure 2: Instability and global attraction for Clark’s equation (k = 3).
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The Neimark-Sacker bifurcation for Clark’s equation

A natural way to investigate the conjecture is to study the bifurcation arising
at α = ak (r). It turns out that, under generic conditions, a Neimark-Sacker
bifurcation arises involving the appearance of an invariant curve near the
fixed point u.

Now, if ε > 0 is small enough, then two possibilities arise:

if ak (r)− ε < α < ak (r), then there is an invariant (attracting) curve near
u; if ak (r) ≤ α < ak (r) + ε, then there is no invariant curve near u
(supercritical N-S bifurcation).

if ak (r)− ε < α ≤ ak (r), then there is no invariant curve near u; if
ak (r) < α < ak (r) + ε, then there is an (unstable) invariant curve near u
(subcritical N-S bifurcation).

In the supercritical case the conjecture is reinforced; in the subcritical case
the conjecture is disproved!
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The Neimark-Sacker bifurcation for Clark’s equation
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Θ ∈ ((k + 1)π/(2k + 1), π).

The case k = 1:

N1(Θ) =
3− 2 cos(Θ/2)

2− 2 cos(Θ/2)
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Figure 4: Graphs of maps Nk (Θ), k = 1, 2, 3,∞.
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The Neimark-Sacker bifurcation for Clark’s equation

The important things about these maps:

Nk (π) = 3/2

N ′k (π) =
1

4 sin(π/(k + 1))

(
1− cos

(
π

k + 1

))(
2 cos

(
π

k + 1

)
− 1
)

In particular, N ′k (π) > 0 for any k ≥ 3.
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Figure 5: Graphs of maps Nk (Θ), k = 1, 2, 3,∞ (detail).
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The Neimark-Sacker bifurcation for Clark’s equation

Σh(u) =
h′′′(u)h′(u)

(h′′(u))2

If h′′(u) = 0:

if h′′′(u) ≤ 0, then Σh(u) =∞
if h′′′(u) > 0, then Σh(u) = −∞

Σh(u) < 3/2⇔ Sh(u) < 0
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L.A.S. and negative Schwarzian derivative should imply G.A.S.!

Theorem 1

Let Θ ∈ ((k + 1)π/(2k + 1), π) be such that h′(u) = rk (Θ). Then (CE)
exhibits a supercritical (respectively, a subcritical) Neimark-Sacker bifurcation
at α = αk (Θ) if Σh(u) < Nk (Θ) (respectively, if Nk (Θ) < Σh(u)).

Corollary

Assume that and one of the following conditions holds:

(a) k ≤ 2 and Sh(u) < 0;

(b) h′(u) < −1.18 and Sh(u) < 0;

(c) Σh(u) < 1.49.

Then (CE) exhibits a supercritical Neimark-Sacker bifurcation at α = αk (Θ).

Remark (Wang and Wei 2008)

If h(x) = pxe−qx is Ricker’s function, then Σh(u) < 1: the bifurcation is
supercritical.

Preliminaries More about Clark’s equation Main results

L.A.S. and negative Schwarzian derivative should imply G.A.S.!

Theorem 1

Let Θ ∈ ((k + 1)π/(2k + 1), π) be such that h′(u) = rk (Θ). Then (CE)
exhibits a supercritical (respectively, a subcritical) Neimark-Sacker bifurcation
at α = αk (Θ) if Σh(u) < Nk (Θ) (respectively, if Nk (Θ) < Σh(u)).

Corollary

Assume that and one of the following conditions holds:

(a) k ≤ 2 and Sh(u) < 0;

(b) h′(u) < −1.18 and Sh(u) < 0;

(c) Σh(u) < 1.49.

Then (CE) exhibits a supercritical Neimark-Sacker bifurcation at α = αk (Θ).

Remark (Wang and Wei 2008)

If h(x) = pxe−qx is Ricker’s function, then Σh(u) < 1: the bifurcation is
supercritical.

Preliminaries More about Clark’s equation Main results

L.A.S. and negative Schwarzian derivative should imply G.A.S.!

Theorem 1

Let Θ ∈ ((k + 1)π/(2k + 1), π) be such that h′(u) = rk (Θ). Then (CE)
exhibits a supercritical (respectively, a subcritical) Neimark-Sacker bifurcation
at α = αk (Θ) if Σh(u) < Nk (Θ) (respectively, if Nk (Θ) < Σh(u)).

Corollary

Assume that and one of the following conditions holds:

(a) k ≤ 2 and Sh(u) < 0;

(b) h′(u) < −1.18 and Sh(u) < 0;

(c) Σh(u) < 1.49.

Then (CE) exhibits a supercritical Neimark-Sacker bifurcation at α = αk (Θ).

Remark (Wang and Wei 2008)

If h(x) = pxe−qx is Ricker’s function, then Σh(u) < 1: the bifurcation is
supercritical.

Preliminaries More about Clark’s equation Main results

L.A.S. and negative Schwarzian derivative should imply G.A.S.!

Theorem 1

Let Θ ∈ ((k + 1)π/(2k + 1), π) be such that h′(u) = rk (Θ). Then (CE)
exhibits a supercritical (respectively, a subcritical) Neimark-Sacker bifurcation
at α = αk (Θ) if Σh(u) < Nk (Θ) (respectively, if Nk (Θ) < Σh(u)).

Corollary

Assume that and one of the following conditions holds:

(a) k ≤ 2 and Sh(u) < 0;

(b) h′(u) < −1.18 and Sh(u) < 0;

(c) Σh(u) < 1.49.

Then (CE) exhibits a supercritical Neimark-Sacker bifurcation at α = αk (Θ).

Remark (Wang and Wei 2008)

If h(x) = pxe−qx is Ricker’s function, then Σh(u) < 1: the bifurcation is
supercritical.



Preliminaries More about Clark’s equation Main results

L.A.S. and negative Schwarzian derivative need not imply G.A.S.!

Theorem 2

Let hε, 0 < ε < ε0, be C4 maps. Assume that for any ε there is uε ∈ I such
that the following conditions are satisfied:

(i) hε(uε) = uε;

(ii) the map D(ε) := h′ε(uε) is differentiable and limε→0 D(ε) = −1,
limε→0 D′(ε) = d < 0;

(iii) the map T (ε) := Σhε(uε) is differentiable and limε→0 T (ε) = 3/2,
limε→0 T ′(ε) = 0.

Then, if k ≥ 3, ε > 0 is small enough and we put h = hε, u = uε, (CE) exhibits
a subcritical Neimark-Sacker bifurcation at α = αk (Θ) with h′(u) = rk (Θ).
In particular, if α > αk (Θ) is close enough to αk (Θ), then u is a local, but not
global, attractor of (CE).

A simple example belonging to the class S

hε(x) =
1

(1− 2ε)(ε+ (1− ε)x) + 2ε(ε+ (1− ε)x)2 ,

with ε > 0 small enough.
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For the map hε we take:

k = 3,

ε = 0.00167086,

α = 0.00573994,

and depict pairs (xn+1, xn) for orbits (xn)∞n=−3 starting at the following initial
conditions:

(1.898919, 1.570831, 0.995705, 0.638023) (blue),

(1.8, 1.570831, 0.995705, 0.638023) (magenta),

(2, 1.570831, 0.995705, 0.638023) (gold),

(1.219971, 0.0768226, 0.00488285, 0.0308514) (green).
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For the map hε we take:

k = 3,

ε = 0.00167086,

α = 0.00573994,

and depict pairs (xn+1, xn) for orbits (xn)∞n=−3 starting at the following initial
conditions:

(1.898919, 1.570831, 0.995705, 0.638023) (blue),

(1.8, 1.570831, 0.995705, 0.638023) (magenta),

(2, 1.570831, 0.995705, 0.638023) (gold),

(1.219971, 0.0768226, 0.00488285, 0.0308514) (green).
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Figure 6: A local, but not global attractor, for Clark’s equation.
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If h does not belong to the class S, a subcritical bifurcation may easily
arise even in the case k = 1:

h(x) =
419 + 722x + 6859x2

(1 + 19x)3 .

If k = 1, then numerical experiments suggest that if h is a decreasing
map belonging to the class S, then (CE) has exactly one metric attractor
(a periodic orbit or an invariant curve). This is not true if k = 2
(El-Morshedy, Liz and J.L. 2008).
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THANK YOU VERY MUCH
FOR YOUR KIND ATTENTION!


