	Preliminaries	More about Clark's equation	Main results
L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation	Table of contents		
18th International Conference on Difference Equations and Applications Barcelona, Spain, July 22-27, 2012			
	Preliminaries		
Víctor Jiménez López			
(joint work with Enrique Parreño Sánchez, Univ. de Murcia)			
Departamento de Matemáticas, Universidad de Murcia, Spain			
UNIVERSIDAD DE MURCIA			
		(口)(名	

Preliminaries	More about Clark's equation	Main results	Preliminaries	More about Clark's equation	Main results
Table of contents			Table of conte	nts	
• Preliminaries			1 Prelimina	aries	
More about Classical Activity of the second seco	ark's equation		More abo	out Clark's equation	
			Main rest	ults	
					900 E (E)(E)(E)(E)(E)

▲□▶ ▲圖▶ ▲ 重▶ ▲ 重 ● 9 Q Q

- * ロ * * @ * * 目 * * 目 * * の < の

Preliminaries	More about Clark's equation	Main results	Preliminaries	More about Clark's equation	Main results
Stability and attraction			Stability and attra	action	
Definition			Definition • A fixed poin	nt <i>u</i> is a <i>global attractor</i> of (DE) if all orbits converg	ge to <i>u</i> .
	• • • •	(型) * E * E * E * のへで		() < < < > < < < < < < < < < < < < < < <	इ। < ≣ > ≡ •२९(
Preliminaries	More about Clark's equation	Main results	Preliminaries	More about Clark's equation	Main results
Stability and attraction			Stability and attra	action	
 Definition A fixed point <i>u</i> is a <i>glot</i> A fixed point <i>u</i> is a <i>loca</i> close enough to <i>u</i> conv 	<i>bal attractor</i> of (DE) if all orbits (<i>al attractor</i> of (DE) if orbits with verge to <i>u</i> .	converge to <i>u</i> . initial conditions	 Definition A fixed point close enoute A fixed point close enoute A fixed point xn - u < 0 stable them 	Int <i>u</i> is a <i>global attractor</i> of (DE) if all orbits convergent <i>u</i> is a <i>local attractor</i> of (DE) if orbits with initial c gh to <i>u</i> converge to <i>u</i> . Int <i>u</i> is <i>stable</i> for (DE) if for any $\epsilon > 0$ there is $\delta > 0$ for any $-k \le n \le 0$ implies $ x_n - u < \epsilon$ for all <i>n</i> . It is called <i>unstable</i> .	ge to <i>u</i> . conditions) such that If <i>u</i> is not
				 < □ > < 否 > < 3 	

Preliminaries

More about Clark's eq

Main results

Definition

- A fixed point *u* is a *global attractor* of (DE) if all orbits converge to *u*.
- A fixed point *u* is a *local attractor* of (DE) if orbits with initial conditions close enough to *u* converge to *u*.
- A fixed point *u* is *stable* for (DE) if for any *ε* > 0 there is *δ* > 0 such that |*x_n* − *u*| < *δ* for any −*k* ≤ *n* ≤ 0 implies |*x_n* − *u*| < *ε* for all *n*. If *u* is not stable then it is called *unstable*.

Global(respectively, local) stable attractors are often called in the literature *globally* (respectively, *locally*) *asymptotically stable*, or, shortly, *G.A.S.* (respectively, *L.A.S.*).

Definition

Stability and attraction

Preliminaries

- A fixed point *u* is a *global attractor* of (DE) if all orbits converge to *u*.
- A fixed point *u* is a *local attractor* of (DE) if orbits with initial conditions close enough to *u* converge to *u*.
- A fixed point *u* is *stable* for (DE) if for any $\epsilon > 0$ there is $\delta > 0$ such that $|x_n u| < \delta$ for any $-k \le n \le 0$ implies $|x_n u| < \epsilon$ for all *n*. If *u* is not stable then it is called *unstable*.

Global(respectively, local) stable attractors are often called in the literature *globally* (respectively, *locally*) *asymptotically stable*, or, shortly, *G.A.S.* (respectively, *L.A.S.*).

A tricky point: in dimension one, a global attractor is always stable (Sedaghat 1997); in higher dimensions this may not happen (Sedaghat 1998)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Preliminaries	More about Clark's equation	Main results	Preliminaries	More about Clark's equation	Main results
Stability and attraction			The first order cas	e	
Definition• A fixed point u is a• A fixed point u is aclose enough to u• A fixed point u is a $ x_n - u < \delta$ for anystable then it is callGlobal(respectively, locglobally (respectively, loc	<i>global attractor</i> of (DE) if all orbits converge to <i>u</i> . <i>local attractor</i> of (DE) if orbits with initial condition converge to <i>u</i> . <i>stable</i> for (DE) if for any $\epsilon > 0$ there is $\delta > 0$ such the $y - k \le n \le 0$ implies $ x_n - u < \epsilon$ for all <i>n</i> . If <i>u</i> is no led <i>unstable</i> . <i>stable</i> attractors are often called in the literature <i>stable</i> or <i>stable</i> , or, shortly, <i>G.A.S.</i>	s nat ot	In what follows w following properti	The assume that the interval map $h: I \rightarrow I$ satisfies the ies:	
(respectively, <i>L.A.S.</i>). A tricky point: in dimen 1997); in higher dimens Our more specific aim:	sion one, a global attractor is always stable (Sedag sions this may not happen (Sedaghat 1998) to study whether L.A.S. may imply G.A.S. for (DE)	ghat হ ৩৭.০		< □ > < 個 > < 通 > < 注 > < 注 >	ह र र र र र

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQの

Preliminaries	More about Clark's equation	Main results	Preliminaries	More about Clark's equation	Main results
The first order case			The first order case	9	
Figure 1: Shepherd's fut the class <i>S</i> .	unction $h(x) = px/(1 + x^q)$ with $p = 9, q = 3$, $u = 2$, belongs to			
	< D > <5			< □ > < 🗗 > <	(ह) र ह र ह र र ह
Preliminaries	More about Clark's equation	Main results	Preliminaries	More about Clark's equation	Main results
The first order case			The first order case	9	
Theorem (Singer 197 If <i>h</i> belongs to the cla	78) ass <i>S</i> , then $ h'(u) \leq 1 \Leftrightarrow L.A.S. \Leftrightarrow G.A.S.$		Theorem (Singer 1 If <i>h</i> belongs to the The interesting cas is satisfied or not,	1978) class <i>S</i> , then $ h'(u) \le 1 \Leftrightarrow L.A.S. \Leftrightarrow G.A.S.$ se is $h'(u) < 0$, because if $h'(u) \ge 0$, then, reg we have G.A.S.	gardless (S3)
	< = > < 5	> + E + + E + + E + + €		< - > < - > <	 (三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Preliminaries	More about Clark's equation	Main results	Preliminaries	More about Clark's equation	Main results
The higher order ca	se		The higher order	case	
An important fact: Thus, <i>u</i> is the only Theorem (Fisher 1 G.A.S. (respectivel and (E2). In particu global attractor bot	<i>v</i> is a fixed point for (E1) and (E2) \Leftrightarrow <i>v</i> is a f fixed point for (E1) and (E2). 984 and many more) ly, L.A.S.) for <i>h</i> implies G.A.S (respectively, L ular, if <i>h</i> belongs to the class <i>S</i> and $ h'(u) \leq$ h for (E1) and (E2).	A.S) for (E1)	For equation (E2 complicated bec <i>u</i> is unstable for	2) (and equation (E1) if k is even) things are much ause it is quite possible that u is locally attracting h.	n more for it while
DeVault et al. 1995 Indeed if <i>k</i> is odd.	5, El-Morshedy and J.L. 2008 then				
G.A.S (respecti	ively L.A.S.) for $h \Leftrightarrow$ G.A.S (respectively L.A.	S.) for (E1)			
	< 口 > < 合 >	() () () () () () () () () () () () () (< □ > < [] > < 3	
Preliminaries	More about Clark's equation	Main results	Preliminaries	More about Clark's equation	Main results
The higher order ca	se		The higher order of	case	
For equation (E2) (complicated becau <i>u</i> is unstable for <i>h</i> .	(and equation (E1) if k is even) things are muscle it is quite possible that u is locally attraction	uch more ng for it while	For equation (E2 complicated bec <i>u</i> is unstable for	2) (and equation (E1) if k is even) things are much ause it is quite possible that u is locally attracting h.	n more for it while
Our precise aim: to belongs to the class	b study whether L.A.S. implies G.A.S. for (CE as S .	E) when <i>h</i>	Our precise aim: belongs to the cl	to study whether L.A.S. implies G.A.S. for (CE) values <i>S</i> .	when <i>h</i>
			In what follows w	we always assume $h'(u) < -1$.	
	<□ > <日 >	() () () () () () () () () () () () () (< □ > < [] > < 3	() () () () () () () () () () () () () (

Preliminaries	More about Clark's equation	Main results	Preliminaries	More about Clark's equation	Main results
L.A.S. for C	Clark's equation		G.A.S. for Clark	s's equation	
Let (r_k) $\Theta \in ((k$	$(\Theta), \alpha_k(\Theta))$ be given by $r_k(\Theta) = \frac{\sin(\Theta/(k+1))}{\sin(\Theta) - \sin(k\Theta/(k+1))},$ $\alpha_k(\Theta) = \frac{\sin(\Theta)}{\sin(k\Theta/(k+1))},$ $(+1)\pi/(2k+1), \pi).$				
Theorem Let $r = \alpha > a_k(x)$	n (Kuruklis 1994) $h'(u)$. Then <i>u</i> is locally attracting (respectively, unstable) for (r) (respectively, $\alpha < a_k(r)$).	CE) if			
	< 日 > < 四 > < 直 > <	E> E ∽Q@		< □ >	< <p>・ (目)、 (目)、 (目)、 (目)、 (日)、 (日)、 (日)、 (日)、 (日)、 (日)、 (日)、 (日</p>

G.A.S. for Clark's equation

Theorem (Tkachenko and Trofimchuk 2005)

Assume that *g* belongs to the class *S* and let r = h'(u). Then *u* is globally attracting for (CE) if

 $\alpha^{k+1} \ge -r\log\frac{r^2-r}{r^2+1}.$

More about Clark's equation

G.A.S. for Clark's equation

Theorem (Tkachenko and Trofimchuk 2005)

L.A.S. and G.A.S for Clark's equation

Assume that *g* belongs to the class *S* and let r = h'(u). Then *u* is globally attracting for (CE) if

$$\alpha^{k+1} \ge -r\log\frac{r^2-r}{r^2+1}.$$

In the case k = 1 they improve the above condition as follows:

either
$$\alpha^2 \ge \frac{r+1}{r-1}$$
 and $\alpha \le 0.88$, or $\alpha \ge \max\left\{0.88, \frac{r+0.88}{r}\right\}$.

More about Clark's equation

G.A.S. for Clark's equation

Theorem (Tkachenko and Trofimchuk 2005)

Assume that *g* belongs to the class *S* and let r = h'(u). Then *u* is globally attracting for (CE) if

 $\alpha^{k+1} \ge -r\log\frac{r^2-r}{r^2+1}.$

More about Clark's equation

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQの

Main results

Preliminaries

In the case k = 1 they improve the above condition as follows:

$$\text{either} \quad \alpha^2 \geq \frac{r+1}{r-1} \;\; \text{and} \;\; \alpha \leq 0.88, \quad \text{or} \quad \alpha \geq \max\left\{0.88, \frac{r+0.88}{r}\right\}.$$

It has been conjectured that if *h* belongs to the class *S*, then $\alpha > a_k(r)$ is actually enough to get global attraction for (CE), that is, L.A.S. implies G.A.S. (Györi and Trofimchuk 2000, EI-Morshedy and Liz 2005). Some numerical estimates support it (Wang and Wei 2008, Liz 2009).

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQの

Main results

Preliminaries

Freiminaries	wore about clark's equation	Main results	Freiminanes	More about Glark's equation	Main Tesuits
The Neimark-Sack	ker bifurcation for Clark's equation		The Neir	mark-Sacker bifurcation for Clark's equation	
A natural way to i at $\alpha = a_k(r)$. It tu <i>bifurcation</i> arises fixed point <i>u</i> .	nvestigate the conjecture is to study the bifurcation ari Irns out that, under generic conditions, a <i>Neimark-Sac</i> involving the appearance of an invariant curve near th	sing ker ne	A nat at α = <i>bifurc</i> fixed	ural way to investigate the conjecture is to study the bifurcation $a = a_k(r)$. It turns out that, under generic conditions, a <i>Neimark-Sa</i> station arises involving the appearance of an invariant curve near point <i>u</i> .	arising acker the
			Now,	if $\epsilon > 0$ is small enough, then two possibilities arise:	

Preliminaries	Note about Glark's equation	Main results	Preiminaries	wore about Glark's equation	Main results
The Neimark-Sack	er bifurcation for Clark's equation		The Neimark-Sac	cker bifurcation for Clark's equation	
A natural way to in at $\alpha = a_k(r)$. It tu <i>bifurcation</i> arises fixed point <i>u</i> .	nvestigate the conjecture is to study the bifurcatio rns out that, under generic conditions, a <i>Neimark</i> - involving the appearance of an invariant curve ne	n arising Sacker ar the	A natural way to at $\alpha = a_k(r)$. It bifurcation arise fixed point u .	o investigate the conjecture is to study the bifurcatic turns out that, under generic conditions, a <i>Neimark</i> as involving the appearance of an invariant curve ne	n arising - <i>Sacker</i> ear the
Now, if $\epsilon > 0$ is sm • if $a_k(r) - \epsilon < u$; if $a_k(r) \le c$ (supercritical	mall enough, then two possibilities arise: $ \leq \alpha < a_k(r) $, then there is an invariant (attracting) of $\alpha < a_k(r) + \epsilon$, then there is no invariant curve near <i>IN-S bifurcation</i>).	curve near ar <i>u</i>	Now, if $\epsilon > 0$ is • if $a_k(r) - \epsilon$ u ; if $a_k(r) \le \frac{1}{2}$ • if $a_k(r) - \epsilon$ $a_k(r) < \alpha < \frac{1}{2}$ (subcritical	small enough, then two possibilities arise: $< \alpha < a_k(r)$, then there is an invariant (attracting) of $\leq \alpha < a_k(r) + \epsilon$, then there is no invariant curve near al <i>N-S bifurcation</i>). $< \alpha \leq a_k(r)$, then there is no invariant curve near of $< a_k(r) + \epsilon$, then there is an (unstable) invariant curve <i>N-S bifurcation</i>).	curve near ar <i>u</i> u; if rve near <i>u</i>
	< ロ > < 御 > < 注	ि स्टिम् इ. १९९७		< 日 > < 合 > < 音	∭ २४३२ इ. १९९९
The Neimark-Sack	Ker bifurcation for Clark's equation	Main results	The Neimark-Sac	More about Clark's equation	Main results
A natural way to in at $\alpha = a_k(r)$. It tu <i>bifurcation</i> arises fixed point <i>u</i> .	nvestigate the conjecture is to study the bifurcatio rns out that, under generic conditions, a <i>Neimark</i> involving the appearance of an invariant curve ne	n arising Sacker ar the	$N_k(\Theta) = rac{1}{\sin\left(rac{1}{k} ight)}$	$\frac{1}{\frac{k\Theta}{k+1}\cos\Theta - k\sin\left(\frac{\Theta}{k+1}\right)}\operatorname{Re}\left(\frac{\sin\left(\frac{k\Theta}{k+1}\right)e^{-i\Theta} - k\sin\left(\frac{\Theta}{k+1}\right)}{1 - e^{i\Theta} + i\sin\Theta e^{2i\Theta}}\right)$	$\frac{n\left(\frac{\Theta}{k+1}\right)}{\frac{e^{-\frac{3}{2}\theta}}{2(k+1)}}\right)$
Now, if $\epsilon > 0$ is sm • if $a_k(r) - \epsilon < u$; if $a_k(r) \le \alpha$ (supercritical • if $a_k(r) - \epsilon < a_k(r) < \alpha < (subcritical N)$	mall enough, then two possibilities arise: $\alpha < a_k(r)$, then there is an invariant (attracting) $\alpha < a_k(r) + \epsilon$, then there is no invariant curve near l <i>N-S bifurcation</i>). $\alpha < a_k(r)$, then there is no invariant curve near $a_k(r) + \epsilon$, then there is no invariant curve near $a_k(r) + \epsilon$, then there is an (unstable) invariant curve $l = \frac{1}{2} 1$	curve near ur <i>u</i> <i>i</i> ; if ve near <i>u</i>	$+ rac{1}{\sin \theta}$ $\Theta \in ((k+1)\pi/2)$	$\frac{\cos\left(\frac{\Theta}{2(k+1)}\right)}{\ln\left(\frac{\Theta}{2}\right)\sin\left(\frac{k\Theta}{2(k+1)}\right)},$ $(2k+1),\pi).$	
In the supercritica the conjecture is o	al case the conjecture is reinforced; in the subcritic disproved!	cal case			
	< ロ > < 母 > < 注			< ロ > < 母 > < き	▶ < ≣ > ≡ → € > < @

1.6

2.0

2.5

Figure 4: Graphs of maps $N_k(\Theta)$, $k = 1, 2, 3, \infty$.

3.0

・ロト・日本・モート モー うんの

 $\Sigma h(u) < 3/2 \Leftrightarrow Sh(u) < 0$

L.A.S. and negative Schwarzian derivative should imply G.A.S.! L.A.S. and negative Schwarzian derivative should imply G.A.S.! Theorem 1 Let $\Theta \in ((k + 1)\pi/(2k + 1), \pi)$ be such that $h'(u) = r_k(\Theta)$. Then (CE) exhibits a supercritical (respectively, a subortical) Neimark-Sacker bifurcation at $\alpha = \alpha_k(\Theta)$ if $\Sigma h(u) < N_k(\Theta)$ (respectively, if $N_k(\Theta) < \Sigma h(u)$). Image: Construction of the second seco							
$\label{eq:starting} \hline \mathbf{F} = \mathbf{F} = \mathbf{F} \cdot \mathbf{F} \cdot$	L.A.S. and negative Schwarzian derivative <i>should</i> imply G.A.S.	!	L.A.S. ar	nd negative Schwarzian de	rivative <i>should</i> in	nply G.A.S.!	
Preliminaries More about Clark's equation Main results Preliminaries More about Clark's equation Main results			Theo Let Θ exhib at α =	rem 1 $e \in ((k+1)\pi/(2k+1),\pi)$ be successed its a supercritical (respectively, and $e = \alpha_k(\Theta)$ if $\Sigma h(u) < N_k(\Theta)$ (respectively) (respectively)	ch that $h'(u) = r_k(\Theta)$ subcritical) Neimark ctively, if $N_k(\Theta) < \Sigma$	Then (CE) Sacker bifurcation (u)).	on E 200 (
	Preliminaries More about Clark's equation	Main results	Preliminaries	More about	Clark's equation		Main results

L.A.S. and negative Schwarzian derivative should imply G.A.S.!

Theorem 1

Let $\Theta \in ((k + 1)\pi/(2k + 1), \pi)$ be such that $h'(u) = r_k(\Theta)$. Then (CE) exhibits a supercritical (respectively, a subcritical) Neimark-Sacker bifurcation at $\alpha = \alpha_k(\Theta)$ if $\Sigma h(u) < N_k(\Theta)$ (respectively, if $N_k(\Theta) < \Sigma h(u)$).

Corollary

Assume that and one of the following conditions holds:

(a) $k \le 2$ and Sh(u) < 0;

(b) h'(u) < -1.18 and Sh(u) < 0;

(c) $\Sigma h(u) < 1.49$.

Then (CE) exhibits a supercritical Neimark-Sacker bifurcation at $\alpha = \alpha_k(\Theta)$.

L.A.S. and negative Schwarzian derivative should imply G.A.S.!

Theorem 1

Let $\Theta \in ((k + 1)\pi/(2k + 1), \pi)$ be such that $h'(u) = r_k(\Theta)$. Then (CE) exhibits a supercritical (respectively, a subcritical) Neimark-Sacker bifurcation at $\alpha = \alpha_k(\Theta)$ if $\Sigma h(u) < N_k(\Theta)$ (respectively, if $N_k(\Theta) < \Sigma h(u)$).

Corollary

```
Assume that and one of the following conditions holds:
```

- (a) $k \le 2$ and Sh(u) < 0;
- (b) h'(u) < -1.18 and Sh(u) < 0;

(c) $\Sigma h(u) < 1.49$.

Then (CE) exhibits a supercritical Neimark-Sacker bifurcation at $\alpha = \alpha_k(\Theta)$.

Remark (Wang and Wei 2008)

If $h(x) = pxe^{-qx}$ is Ricker's function, then $\Sigma h(u) < 1$: the bifurcation is supercritical.

